{"title":"星形部分希加德图的科斯祖尔对偶性","authors":"Isabella Khan","doi":"arxiv-2408.01564","DOIUrl":null,"url":null,"abstract":"By slicing the Heegaard diagram for a given $3$-manifold in a particular way,\nit is possible to construct $\\mathcal{A}_{\\infty}$-bimodules, the tensor\nproduct of which retrieves the Heegaard Floer homology of the original\n3-manifold. The first step in this is to construct algebras corresponding to\nthe individual slices. In this paper, we use the graphical calculus for\n$\\mathcal{A}_{\\infty}$-structures introduced in arXiv:2009.05222v3 to construct\nKoszul dual $\\mathcal{A}_{\\infty}$ algebras $\\mathcal{A}$ and $\\mathcal{B}$ for\na particular star-shaped class of slice. Using $\\mathcal{A}_{\\infty}$-bimodules\nover $\\mathcal{A}$ and $\\mathcal{B}$, we then verify the Koszul duality\nrelation.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Koszul Duality for star-shaped partial Heegaard diagrams\",\"authors\":\"Isabella Khan\",\"doi\":\"arxiv-2408.01564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By slicing the Heegaard diagram for a given $3$-manifold in a particular way,\\nit is possible to construct $\\\\mathcal{A}_{\\\\infty}$-bimodules, the tensor\\nproduct of which retrieves the Heegaard Floer homology of the original\\n3-manifold. The first step in this is to construct algebras corresponding to\\nthe individual slices. In this paper, we use the graphical calculus for\\n$\\\\mathcal{A}_{\\\\infty}$-structures introduced in arXiv:2009.05222v3 to construct\\nKoszul dual $\\\\mathcal{A}_{\\\\infty}$ algebras $\\\\mathcal{A}$ and $\\\\mathcal{B}$ for\\na particular star-shaped class of slice. Using $\\\\mathcal{A}_{\\\\infty}$-bimodules\\nover $\\\\mathcal{A}$ and $\\\\mathcal{B}$, we then verify the Koszul duality\\nrelation.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Koszul Duality for star-shaped partial Heegaard diagrams
By slicing the Heegaard diagram for a given $3$-manifold in a particular way,
it is possible to construct $\mathcal{A}_{\infty}$-bimodules, the tensor
product of which retrieves the Heegaard Floer homology of the original
3-manifold. The first step in this is to construct algebras corresponding to
the individual slices. In this paper, we use the graphical calculus for
$\mathcal{A}_{\infty}$-structures introduced in arXiv:2009.05222v3 to construct
Koszul dual $\mathcal{A}_{\infty}$ algebras $\mathcal{A}$ and $\mathcal{B}$ for
a particular star-shaped class of slice. Using $\mathcal{A}_{\infty}$-bimodules
over $\mathcal{A}$ and $\mathcal{B}$, we then verify the Koszul duality
relation.