{"title":"对数 Calabi-Yau 曲面的闭弦镜像对称性","authors":"Hyunbin Kim","doi":"arxiv-2408.02592","DOIUrl":null,"url":null,"abstract":"This paper establishes closed-string mirror symmetry for all log Calabi-Yau\nsurfaces with generic parameters, where the exceptional divisor are\nsufficiently small. We demonstrate that blowing down a $(-1)$-divisor removes a\nsingle geometric critical point, ensuring that the resulting potential remains\na Morse function. Additionally, we show that the critical values are distinct,\nwhich implies that the quantum cohomology $QH^{\\ast}(X)$ is semi-simple.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-String Mirror Symmetry for Log Calabi-Yau Surfaces\",\"authors\":\"Hyunbin Kim\",\"doi\":\"arxiv-2408.02592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes closed-string mirror symmetry for all log Calabi-Yau\\nsurfaces with generic parameters, where the exceptional divisor are\\nsufficiently small. We demonstrate that blowing down a $(-1)$-divisor removes a\\nsingle geometric critical point, ensuring that the resulting potential remains\\na Morse function. Additionally, we show that the critical values are distinct,\\nwhich implies that the quantum cohomology $QH^{\\\\ast}(X)$ is semi-simple.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed-String Mirror Symmetry for Log Calabi-Yau Surfaces
This paper establishes closed-string mirror symmetry for all log Calabi-Yau
surfaces with generic parameters, where the exceptional divisor are
sufficiently small. We demonstrate that blowing down a $(-1)$-divisor removes a
single geometric critical point, ensuring that the resulting potential remains
a Morse function. Additionally, we show that the critical values are distinct,
which implies that the quantum cohomology $QH^{\ast}(X)$ is semi-simple.