{"title":"拉伸表面上非正交停滞点附近混合纳米流体的对流滑移流动","authors":"Tanvi Singla, Sapna Sharma, Bhuvaneshvar Kumar","doi":"10.1002/zamm.202300392","DOIUrl":null,"url":null,"abstract":"The present analysis deals with a steady mixed convective flow of hybrid nanofluid (HNF) near the stagnation point of a heated or cooled stretching sheet with velocity slip and convective boundaries. The understanding of nanoparticle grouping kinematics is essential to figure out the thermal impact of HNF flow on the surface. This problem formulation consists of and Cu as nanoparticles with water as a base fluid. The ordinary differential equations are derived from partial differential equations using scaling variables. The governing system of equations has been solved numerically by using the shooting method with Runge–Kutta approach. Parameters such as stagnation, slip, radiation, obliqueness, convection, and the volume fraction of nanoparticles all are key factors influencing the overall velocity as well as the temperature profiles, Nusselt number and skin friction coefficient. The heat transfer rate rises with increasing the stagnation velocity of the free stream, Biot number, and radiation parameter. When the volume of nanoparticles increases from 2% to 5%, the heat transfer boosts up from 2.97% to 10.48%. Hence, the addition of copper nanoparticles has improved the heat transmission characteristics. Also, streamlined patterns for positive and negative obliqueness are in different orientations. The point of zero shear stress moves towards the right and left of the origin for heated and cooled sheet, respectively, depending on the obliqueness and stagnation velocity.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"371 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convective slip flow of a hybrid nanofluid near a non‐orthogonal stagnation point over a stretching surface\",\"authors\":\"Tanvi Singla, Sapna Sharma, Bhuvaneshvar Kumar\",\"doi\":\"10.1002/zamm.202300392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present analysis deals with a steady mixed convective flow of hybrid nanofluid (HNF) near the stagnation point of a heated or cooled stretching sheet with velocity slip and convective boundaries. The understanding of nanoparticle grouping kinematics is essential to figure out the thermal impact of HNF flow on the surface. This problem formulation consists of and Cu as nanoparticles with water as a base fluid. The ordinary differential equations are derived from partial differential equations using scaling variables. The governing system of equations has been solved numerically by using the shooting method with Runge–Kutta approach. Parameters such as stagnation, slip, radiation, obliqueness, convection, and the volume fraction of nanoparticles all are key factors influencing the overall velocity as well as the temperature profiles, Nusselt number and skin friction coefficient. The heat transfer rate rises with increasing the stagnation velocity of the free stream, Biot number, and radiation parameter. When the volume of nanoparticles increases from 2% to 5%, the heat transfer boosts up from 2.97% to 10.48%. Hence, the addition of copper nanoparticles has improved the heat transmission characteristics. Also, streamlined patterns for positive and negative obliqueness are in different orientations. The point of zero shear stress moves towards the right and left of the origin for heated and cooled sheet, respectively, depending on the obliqueness and stagnation velocity.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"371 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convective slip flow of a hybrid nanofluid near a non‐orthogonal stagnation point over a stretching surface
The present analysis deals with a steady mixed convective flow of hybrid nanofluid (HNF) near the stagnation point of a heated or cooled stretching sheet with velocity slip and convective boundaries. The understanding of nanoparticle grouping kinematics is essential to figure out the thermal impact of HNF flow on the surface. This problem formulation consists of and Cu as nanoparticles with water as a base fluid. The ordinary differential equations are derived from partial differential equations using scaling variables. The governing system of equations has been solved numerically by using the shooting method with Runge–Kutta approach. Parameters such as stagnation, slip, radiation, obliqueness, convection, and the volume fraction of nanoparticles all are key factors influencing the overall velocity as well as the temperature profiles, Nusselt number and skin friction coefficient. The heat transfer rate rises with increasing the stagnation velocity of the free stream, Biot number, and radiation parameter. When the volume of nanoparticles increases from 2% to 5%, the heat transfer boosts up from 2.97% to 10.48%. Hence, the addition of copper nanoparticles has improved the heat transmission characteristics. Also, streamlined patterns for positive and negative obliqueness are in different orientations. The point of zero shear stress moves towards the right and left of the origin for heated and cooled sheet, respectively, depending on the obliqueness and stagnation velocity.