用预测在欧几里得空间中搜索

Sergio Cabello, Panos Giannopoulos
{"title":"用预测在欧几里得空间中搜索","authors":"Sergio Cabello, Panos Giannopoulos","doi":"arxiv-2408.04964","DOIUrl":null,"url":null,"abstract":"We study the problem of searching for a target at some unknown location in\n$\\mathbb{R}^d$ when additional information regarding the position of the target\nis available in the form of predictions. In our setting, predictions come as\napproximate distances to the target: for each point $p\\in \\mathbb{R}^d$ that\nthe searcher visits, we obtain a value $\\lambda(p)$ such that $|p\\mathbf{t}|\\le\n\\lambda(p) \\le c\\cdot |p\\mathbf{t}|$, where $c\\ge 1$ is a fixed constant,\n$\\mathbf{t}$ is the position of the target, and $|p\\mathbf{t}|$ is the\nEuclidean distance of $p$ to $\\mathbf{t}$. The cost of the search is the length\nof the path followed by the searcher. Our main positive result is a strategy\nthat achieves $(12c)^{d+1}$-competitive ratio, even when the constant $c$ is\nunknown. We also give a lower bound of roughly $(c/16)^{d-1}$ on the\ncompetitive ratio of any search strategy in $\\mathbb{R}^d$.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching in Euclidean Spaces with Predictions\",\"authors\":\"Sergio Cabello, Panos Giannopoulos\",\"doi\":\"arxiv-2408.04964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of searching for a target at some unknown location in\\n$\\\\mathbb{R}^d$ when additional information regarding the position of the target\\nis available in the form of predictions. In our setting, predictions come as\\napproximate distances to the target: for each point $p\\\\in \\\\mathbb{R}^d$ that\\nthe searcher visits, we obtain a value $\\\\lambda(p)$ such that $|p\\\\mathbf{t}|\\\\le\\n\\\\lambda(p) \\\\le c\\\\cdot |p\\\\mathbf{t}|$, where $c\\\\ge 1$ is a fixed constant,\\n$\\\\mathbf{t}$ is the position of the target, and $|p\\\\mathbf{t}|$ is the\\nEuclidean distance of $p$ to $\\\\mathbf{t}$. The cost of the search is the length\\nof the path followed by the searcher. Our main positive result is a strategy\\nthat achieves $(12c)^{d+1}$-competitive ratio, even when the constant $c$ is\\nunknown. We also give a lower bound of roughly $(c/16)^{d-1}$ on the\\ncompetitive ratio of any search strategy in $\\\\mathbb{R}^d$.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的问题是,当有关目标位置的额外信息以预测的形式存在时,如何在$\mathbb{R}^d$中的某个未知位置搜索目标。在我们的设置中,预测结果是目标的近似距离:对于搜索者访问的 \mathbb{R}^d$ 中的每个点 $p,我们都会得到一个值 $/lambda(p)$,使得 $|p\mathbf{t}|\le\lambda(p) \le c\cdot |p\mathbf{t}|$ 、其中 $c\ge 1$ 是一个固定常数,$\mathbf{t}$ 是目标的位置,$|p\mathbf{t}|$ 是 $p$ 到 $\mathbf{t}$ 的欧几里得距离。搜索成本是搜索者所走路径的长度。我们的主要正面结果是,即使常数 $c$ 未知,也能实现 $(12c)^{d+1}$ 竞争比的策略。我们还给出了$\mathbb{R}^d$中任何搜索策略的竞争率的下限,大约为$(c/16)^{d-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Searching in Euclidean Spaces with Predictions
We study the problem of searching for a target at some unknown location in $\mathbb{R}^d$ when additional information regarding the position of the target is available in the form of predictions. In our setting, predictions come as approximate distances to the target: for each point $p\in \mathbb{R}^d$ that the searcher visits, we obtain a value $\lambda(p)$ such that $|p\mathbf{t}|\le \lambda(p) \le c\cdot |p\mathbf{t}|$, where $c\ge 1$ is a fixed constant, $\mathbf{t}$ is the position of the target, and $|p\mathbf{t}|$ is the Euclidean distance of $p$ to $\mathbf{t}$. The cost of the search is the length of the path followed by the searcher. Our main positive result is a strategy that achieves $(12c)^{d+1}$-competitive ratio, even when the constant $c$ is unknown. We also give a lower bound of roughly $(c/16)^{d-1}$ on the competitive ratio of any search strategy in $\mathbb{R}^d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信