深度学习方法获得的包容性电子-碳散射数据的经验拟合

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy
Beata E. Kowal, Krzysztof M. Graczyk, Artur M. Ankowski, Rwik Dharmapal Banerjee, Hemant Prasad, Jan T. Sobczyk
{"title":"深度学习方法获得的包容性电子-碳散射数据的经验拟合","authors":"Beata E. Kowal, Krzysztof M. Graczyk, Artur M. Ankowski, Rwik Dharmapal Banerjee, Hemant Prasad, Jan T. Sobczyk","doi":"10.1103/physrevc.110.025501","DOIUrl":null,"url":null,"abstract":"Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>χ</mi><mn>2</mn></msup></math> defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"46 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods\",\"authors\":\"Beata E. Kowal, Krzysztof M. Graczyk, Artur M. Ankowski, Rwik Dharmapal Banerjee, Hemant Prasad, Jan T. Sobczyk\",\"doi\":\"10.1103/physrevc.110.025501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>χ</mi><mn>2</mn></msup></math> defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.025501\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.025501","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用神经网络框架,我们获得了碳的电子散射截面在广阔运动学区域的经验拟合,从准弹性峰通过共振激发延伸到深弹性散射的开始。我们考虑了两种不同的方法来获得这种与模型无关的参数和相应的不确定性:基于自举法和蒙特卡罗剔除法。在我们的分析中,χ2 定义了损失函数,包括每组独立测量的点对点不确定性和归一化不确定性。我们的统计方法得出的拟合质量相当,不确定性也相近,约为 7%。为了检验这些模型,我们将它们的预测结果与训练过程中排除的测试数据集以及光谱函数方法中获得的理论预测结果进行了比较。两个模型的预测结果与实验测量结果和理论计算结果一致。我们还将其与覆盖运动学区域之外的数据集进行了比较,发现自举法比基于剔除算法的方法显示出更好的内插和外推能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods

Empirical fits to inclusive electron-carbon scattering data obtained by deep-learning methods
Employing the neural network framework, we obtain empirical fits to the electron-scattering cross sections for carbon over a broad kinematic region, extending from the quasielastic peak through resonance excitation to the onset of deep-inelastic scattering. We consider two different methods of obtaining such model-independent parametrizations and the corresponding uncertainties: based on the bootstrap approach and the Monte Carlo dropout approach. In our analysis, the χ2 defines the loss function, including point-to-point and normalization uncertainties for each independent set of measurements. Our statistical approaches lead to fits of comparable quality and similar uncertainties of the order of 7%. To test these models, we compare their predictions to test datasets excluded from the training process and theoretical predictions obtained within the spectral function approach. The predictions of both models agree with experimental measurements and theoretical calculations. We also perform a comparison to a dataset lying beyond the covered kinematic region, and find that the bootstrap approach shows better interpolation and extrapolation abilities than the one based on the dropout algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信