Y. X. Zhang (张妍心), B. R. Liu (刘博然), K. Y. Zhang (张开元), J. M. Yao (尧江明)
{"title":"质子数为Z=117、119的奇Z超重核的壳结构和形状转变:在连续体中应用变形相对论哈特里-波哥留布夫理论的启示","authors":"Y. X. Zhang (张妍心), B. R. Liu (刘博然), K. Y. Zhang (张开元), J. M. Yao (尧江明)","doi":"10.1103/physrevc.110.024302","DOIUrl":null,"url":null,"abstract":"We present a systematic study on the structural properties of odd-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math> superheavy nuclei with proton numbers <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>117</mn><mo>,</mo><mn>119</mn></mrow></math>, and neutron numbers <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> increasing from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mo>=</mo><mn>170</mn></mrow></math> to the neutron dripline within the framework of axially deformed relativistic Hartree-Bogoliubov theory in continuum. The results are compared with those of even-even superheavy nuclei with proton numbers <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>118</mn></mrow></math> and 120. We analyze various bulk properties of their ground states, including binding energies, quadrupole deformations, root-mean-square radii, nucleon separation energies, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math>-decay energies. The coexistence of competing prolate and oblate or spherical shapes leads to abrupt changes in both quadrupole deformations and charge radii as functions of neutron numbers. Compared to even-even nuclei, the odd-mass ones exhibit a more complicated transition picture, in which the quantum numbers of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>K</mi><mi>π</mi></msup></math> of the lowest-energy configuration may change with deformation. This may result in the change of angular momentum in the ground-state to ground-state <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> decay and thus quench the decay rate in odd-mass nuclei. Moreover, our results demonstrate a pronounced proton shell gap at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>120</mn></mrow></math>, instead of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>114</mn></mrow></math>, which is consistent with the predictions of most covariant density functional theories. Besides, large neutron shell gaps are found at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mo>=</mo><mn>172</mn></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mo>=</mo><mn>258</mn></mrow></math> in the four isotopic chains, as well as at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mo>=</mo><mn>184</mn></mrow></math> in the light two isotopic chains with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>117</mn></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Z</mi><mo>=</mo><mn>118</mn></mrow></math>, attributed to the nearly degenerate <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>3</mn><mi>d</mi></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4</mn><mi>p</mi></mrow></math> spin-orbit doublet states due to the presence of bubble structure.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"49 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shell structure and shape transition in odd-Z superheavy nuclei with proton numbers Z=117, 119: Insights from applying deformed relativistic Hartree-Bogoliubov theory in continuum\",\"authors\":\"Y. X. Zhang (张妍心), B. R. Liu (刘博然), K. Y. Zhang (张开元), J. M. Yao (尧江明)\",\"doi\":\"10.1103/physrevc.110.024302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a systematic study on the structural properties of odd-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Z</mi></math> superheavy nuclei with proton numbers <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>117</mn><mo>,</mo><mn>119</mn></mrow></math>, and neutron numbers <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> increasing from <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>N</mi><mo>=</mo><mn>170</mn></mrow></math> to the neutron dripline within the framework of axially deformed relativistic Hartree-Bogoliubov theory in continuum. The results are compared with those of even-even superheavy nuclei with proton numbers <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>118</mn></mrow></math> and 120. We analyze various bulk properties of their ground states, including binding energies, quadrupole deformations, root-mean-square radii, nucleon separation energies, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math>-decay energies. The coexistence of competing prolate and oblate or spherical shapes leads to abrupt changes in both quadrupole deformations and charge radii as functions of neutron numbers. Compared to even-even nuclei, the odd-mass ones exhibit a more complicated transition picture, in which the quantum numbers of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>K</mi><mi>π</mi></msup></math> of the lowest-energy configuration may change with deformation. This may result in the change of angular momentum in the ground-state to ground-state <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi></math> decay and thus quench the decay rate in odd-mass nuclei. Moreover, our results demonstrate a pronounced proton shell gap at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>120</mn></mrow></math>, instead of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>114</mn></mrow></math>, which is consistent with the predictions of most covariant density functional theories. Besides, large neutron shell gaps are found at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>N</mi><mo>=</mo><mn>172</mn></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>N</mi><mo>=</mo><mn>258</mn></mrow></math> in the four isotopic chains, as well as at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>N</mi><mo>=</mo><mn>184</mn></mrow></math> in the light two isotopic chains with <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>117</mn></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Z</mi><mo>=</mo><mn>118</mn></mrow></math>, attributed to the nearly degenerate <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>3</mn><mi>d</mi></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>4</mn><mi>p</mi></mrow></math> spin-orbit doublet states due to the presence of bubble structure.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.024302\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.024302","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Shell structure and shape transition in odd-Z superheavy nuclei with proton numbers Z=117, 119: Insights from applying deformed relativistic Hartree-Bogoliubov theory in continuum
We present a systematic study on the structural properties of odd- superheavy nuclei with proton numbers , and neutron numbers increasing from to the neutron dripline within the framework of axially deformed relativistic Hartree-Bogoliubov theory in continuum. The results are compared with those of even-even superheavy nuclei with proton numbers and 120. We analyze various bulk properties of their ground states, including binding energies, quadrupole deformations, root-mean-square radii, nucleon separation energies, and -decay energies. The coexistence of competing prolate and oblate or spherical shapes leads to abrupt changes in both quadrupole deformations and charge radii as functions of neutron numbers. Compared to even-even nuclei, the odd-mass ones exhibit a more complicated transition picture, in which the quantum numbers of of the lowest-energy configuration may change with deformation. This may result in the change of angular momentum in the ground-state to ground-state decay and thus quench the decay rate in odd-mass nuclei. Moreover, our results demonstrate a pronounced proton shell gap at , instead of , which is consistent with the predictions of most covariant density functional theories. Besides, large neutron shell gaps are found at and in the four isotopic chains, as well as at in the light two isotopic chains with and , attributed to the nearly degenerate and spin-orbit doublet states due to the presence of bubble structure.
期刊介绍:
Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field.
PRC covers experimental and theoretical results in all aspects of nuclear physics, including:
Nucleon-nucleon interaction, few-body systems
Nuclear structure
Nuclear reactions
Relativistic nuclear collisions
Hadronic physics and QCD
Electroweak interaction, symmetries
Nuclear astrophysics