评估穴居蛛形纲动物微生境和保护风险的机器学习方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hugh G. Steiner, Shlomi Aharon, Jesús Ballesteros, Guilherme Gainett, Efrat Gavish-Regev, Prashant P. Sharma
{"title":"评估穴居蛛形纲动物微生境和保护风险的机器学习方法","authors":"Hugh G. Steiner, Shlomi Aharon, Jesús Ballesteros, Guilherme Gainett, Efrat Gavish-Regev, Prashant P. Sharma","doi":"10.1007/s10592-024-01627-5","DOIUrl":null,"url":null,"abstract":"<p>The biota of cave habitats faces heightened conservation risks, due to geographic isolation and high levels of endemism. Molecular datasets, in tandem with ecological surveys, have the potential to precisely delimit the nature of cave endemism and identify conservation priorities for microendemic species. Here, we sequenced ultraconserved elements of <i>Tegenaria</i> within, and at the entrances of, 25 cave sites to test phylogenetic relationships, combined with an unsupervised machine learning approach for detecting species. Our analyses identified clear and well-supported genetic breaks in the dataset that accorded closely with morphologically diagnosable units. Through these analyses, we also detected some previously unidentified, potential cryptic morphospecies. We then performed conservation assessments for seven troglobitic Israeli species of this genus and determined five of these to be critically endangered.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches to assess microendemicity and conservation risk in cave-dwelling arachnofauna\",\"authors\":\"Hugh G. Steiner, Shlomi Aharon, Jesús Ballesteros, Guilherme Gainett, Efrat Gavish-Regev, Prashant P. Sharma\",\"doi\":\"10.1007/s10592-024-01627-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The biota of cave habitats faces heightened conservation risks, due to geographic isolation and high levels of endemism. Molecular datasets, in tandem with ecological surveys, have the potential to precisely delimit the nature of cave endemism and identify conservation priorities for microendemic species. Here, we sequenced ultraconserved elements of <i>Tegenaria</i> within, and at the entrances of, 25 cave sites to test phylogenetic relationships, combined with an unsupervised machine learning approach for detecting species. Our analyses identified clear and well-supported genetic breaks in the dataset that accorded closely with morphologically diagnosable units. Through these analyses, we also detected some previously unidentified, potential cryptic morphospecies. We then performed conservation assessments for seven troglobitic Israeli species of this genus and determined five of these to be critically endangered.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10592-024-01627-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10592-024-01627-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

由于地理隔离和高度特有性,洞穴栖息地的生物群面临着更大的保护风险。分子数据集与生态调查相结合,有可能精确划分洞穴特有性的性质,并确定小地方物种的保护重点。在此,我们对 25 个洞穴内和洞穴入口处的 Tegenaria 超保守分子进行了测序,以检验系统发育关系,并结合无监督机器学习方法来检测物种。我们的分析在数据集中发现了与形态学上可诊断的单位密切吻合的、明确的、得到充分支持的基因断裂。通过这些分析,我们还发现了一些以前未被发现的潜在隐性形态物种。随后,我们对该属的 7 个以色列蛙类物种进行了保护评估,并确定其中 5 个物种为极度濒危物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning approaches to assess microendemicity and conservation risk in cave-dwelling arachnofauna

Machine learning approaches to assess microendemicity and conservation risk in cave-dwelling arachnofauna

The biota of cave habitats faces heightened conservation risks, due to geographic isolation and high levels of endemism. Molecular datasets, in tandem with ecological surveys, have the potential to precisely delimit the nature of cave endemism and identify conservation priorities for microendemic species. Here, we sequenced ultraconserved elements of Tegenaria within, and at the entrances of, 25 cave sites to test phylogenetic relationships, combined with an unsupervised machine learning approach for detecting species. Our analyses identified clear and well-supported genetic breaks in the dataset that accorded closely with morphologically diagnosable units. Through these analyses, we also detected some previously unidentified, potential cryptic morphospecies. We then performed conservation assessments for seven troglobitic Israeli species of this genus and determined five of these to be critically endangered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信