盐酸溶液中草酸浸出焦锰矿的优化和动力学研究

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Mehmet Kayra Karacahan
{"title":"盐酸溶液中草酸浸出焦锰矿的优化和动力学研究","authors":"Mehmet Kayra Karacahan","doi":"10.1007/s40831-024-00869-4","DOIUrl":null,"url":null,"abstract":"<p>The leaching behavior of pyrolusite minerals was examined in hydrochloric acid solutions, including oxalic acid, to evaluate the influence of various experimental conditions. The optimum parameters for the leaching process were found in the first stage, and the process's kinetics were assessed in the second. The concentrations of oxalic acid, hydrochloric acid, and temperature were chosen as independent variables in the optimization experiments, with the central composite design used to analyze the experimental data. The optimum concentrations for oxalic acid, hydrochloric acid, and temperature were determined to be 0.75 mol/L, 1.2 mol/L, and 60 °C, respectively. The leaching rate was determined to be 97.4% for 120 min of response time in optimum situations. The kinetic assessment experiments studied the effects of solid/liquid ratio, particle size, stirring speed, and temperature on the manganese leaching rate from pyrolusite. In the studies, the leaching rate was shown to rise with increasing temperature and stirring speed, as well as with decreasing particle size and solid/liquid ratio. The kinetic analysis revealed that the leaching kinetics matched the mixed kinetic model, and a mathematical model for the leaching process was developed. This process's activation energy was determined to be 29.05 kJ/mol.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"46 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization and Kinetic Study of Manganese Leaching from Pyrolusite Ore in Hydrochloric Acid Solutions with Oxalic Acid\",\"authors\":\"Mehmet Kayra Karacahan\",\"doi\":\"10.1007/s40831-024-00869-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The leaching behavior of pyrolusite minerals was examined in hydrochloric acid solutions, including oxalic acid, to evaluate the influence of various experimental conditions. The optimum parameters for the leaching process were found in the first stage, and the process's kinetics were assessed in the second. The concentrations of oxalic acid, hydrochloric acid, and temperature were chosen as independent variables in the optimization experiments, with the central composite design used to analyze the experimental data. The optimum concentrations for oxalic acid, hydrochloric acid, and temperature were determined to be 0.75 mol/L, 1.2 mol/L, and 60 °C, respectively. The leaching rate was determined to be 97.4% for 120 min of response time in optimum situations. The kinetic assessment experiments studied the effects of solid/liquid ratio, particle size, stirring speed, and temperature on the manganese leaching rate from pyrolusite. In the studies, the leaching rate was shown to rise with increasing temperature and stirring speed, as well as with decreasing particle size and solid/liquid ratio. The kinetic analysis revealed that the leaching kinetics matched the mixed kinetic model, and a mathematical model for the leaching process was developed. This process's activation energy was determined to be 29.05 kJ/mol.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00869-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00869-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了辉绿岩矿物在盐酸溶液(包括草酸)中的浸出行为,以评估各种实验条件的影响。第一阶段找到了浸出过程的最佳参数,第二阶段评估了浸出过程的动力学。在优化实验中,草酸、盐酸和温度的浓度被选为自变量,并采用中心复合设计来分析实验数据。确定草酸、盐酸和温度的最佳浓度分别为 0.75 摩尔/升、1.2 摩尔/升和 60 °C。在最佳情况下,浸出率在 120 分钟的反应时间内达到 97.4%。动力学评估实验研究了固液比、粒度、搅拌速度和温度对辉绿岩锰浸出率的影响。研究表明,随着温度和搅拌速度的增加,以及粒度和固液比的减小,锰的浸出率也随之增加。动力学分析表明,浸出动力学符合混合动力学模型,并建立了浸出过程的数学模型。该过程的活化能被确定为 29.05 kJ/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization and Kinetic Study of Manganese Leaching from Pyrolusite Ore in Hydrochloric Acid Solutions with Oxalic Acid

Optimization and Kinetic Study of Manganese Leaching from Pyrolusite Ore in Hydrochloric Acid Solutions with Oxalic Acid

The leaching behavior of pyrolusite minerals was examined in hydrochloric acid solutions, including oxalic acid, to evaluate the influence of various experimental conditions. The optimum parameters for the leaching process were found in the first stage, and the process's kinetics were assessed in the second. The concentrations of oxalic acid, hydrochloric acid, and temperature were chosen as independent variables in the optimization experiments, with the central composite design used to analyze the experimental data. The optimum concentrations for oxalic acid, hydrochloric acid, and temperature were determined to be 0.75 mol/L, 1.2 mol/L, and 60 °C, respectively. The leaching rate was determined to be 97.4% for 120 min of response time in optimum situations. The kinetic assessment experiments studied the effects of solid/liquid ratio, particle size, stirring speed, and temperature on the manganese leaching rate from pyrolusite. In the studies, the leaching rate was shown to rise with increasing temperature and stirring speed, as well as with decreasing particle size and solid/liquid ratio. The kinetic analysis revealed that the leaching kinetics matched the mixed kinetic model, and a mathematical model for the leaching process was developed. This process's activation energy was determined to be 29.05 kJ/mol.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信