使用时间分数、静态记忆、傅立叶伪谱法模拟幂律超声吸收

Matthew. J. King, Timon. S. Gutleb, B. E. Treeby, B. T. Cox
{"title":"使用时间分数、静态记忆、傅立叶伪谱法模拟幂律超声吸收","authors":"Matthew. J. King, Timon. S. Gutleb, B. E. Treeby, B. T. Cox","doi":"arxiv-2408.02541","DOIUrl":null,"url":null,"abstract":"We summarise and implement a numerical method for evaluating a numerical\nmethod for modelling the frequency dependent power-law absorption within\nultrasound using the first order linear wave equations with a loss taking the\nform of a fractional time derivative. The (Caputo) fractional time derivative\nrequires the full problem history which is contained within an iterative\nprocedure with the resulting numerical method requiring a static memory at\nacross all time steps without loss of accuracy. The Spatial domain is treated\nby the Fourier k-space method, with derivatives on a uniform grid. Numerically\ncomparisons are made against a model for the same power-law absorption with\nloss described by the fractional- Laplacian operator. One advantage of the\nfractional time derivative over the Fractional Laplacian is the local treatment\nof the power-law, allowing for a spatially varying frequency power-law.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling power-law ultrasound absorption using a time-fractional, static memory, Fourier pseudo-spectral method\",\"authors\":\"Matthew. J. King, Timon. S. Gutleb, B. E. Treeby, B. T. Cox\",\"doi\":\"arxiv-2408.02541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We summarise and implement a numerical method for evaluating a numerical\\nmethod for modelling the frequency dependent power-law absorption within\\nultrasound using the first order linear wave equations with a loss taking the\\nform of a fractional time derivative. The (Caputo) fractional time derivative\\nrequires the full problem history which is contained within an iterative\\nprocedure with the resulting numerical method requiring a static memory at\\nacross all time steps without loss of accuracy. The Spatial domain is treated\\nby the Fourier k-space method, with derivatives on a uniform grid. Numerically\\ncomparisons are made against a model for the same power-law absorption with\\nloss described by the fractional- Laplacian operator. One advantage of the\\nfractional time derivative over the Fractional Laplacian is the local treatment\\nof the power-law, allowing for a spatially varying frequency power-law.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们总结并实施了一种数值方法,用于评估利用一阶线性波方程模拟超声波内随频率变化的幂律吸收的数值方法,其损失采用分数时间导数形式。卡普托)分数时间导数要求在迭代过程中包含完整的问题历史,由此产生的数值方法要求在不损失精度的情况下在所有时间步长上都有静态记忆。空间域采用傅里叶 k 空间方法处理,在统一网格上进行导数计算。在数值上,与分数拉普拉斯算子描述的相同幂律吸收损失模型进行了比较。与分数拉普拉斯算子相比,分数时间导数的一个优点是对幂律进行了局部处理,允许使用空间变化的频率幂律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling power-law ultrasound absorption using a time-fractional, static memory, Fourier pseudo-spectral method
We summarise and implement a numerical method for evaluating a numerical method for modelling the frequency dependent power-law absorption within ultrasound using the first order linear wave equations with a loss taking the form of a fractional time derivative. The (Caputo) fractional time derivative requires the full problem history which is contained within an iterative procedure with the resulting numerical method requiring a static memory at across all time steps without loss of accuracy. The Spatial domain is treated by the Fourier k-space method, with derivatives on a uniform grid. Numerically comparisons are made against a model for the same power-law absorption with loss described by the fractional- Laplacian operator. One advantage of the fractional time derivative over the Fractional Laplacian is the local treatment of the power-law, allowing for a spatially varying frequency power-law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信