有限群表示的增长问题

David He
{"title":"有限群表示的增长问题","authors":"David He","doi":"arxiv-2408.04196","DOIUrl":null,"url":null,"abstract":"We compute (exact and asymptotic) formulas for the growth rate of the number\nof indecomposable summands in the tensor powers of representations of finite\ngroups, over a field of arbitrary characteristic. In characteristic zero, we\nobtain in addition a general exact formula for the growth rate and give a\ncomplete solution to the growth problems in terms of the character table. We\nalso provide code used to compute our formulas.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth Problems for Representations of Finite Groups\",\"authors\":\"David He\",\"doi\":\"arxiv-2408.04196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute (exact and asymptotic) formulas for the growth rate of the number\\nof indecomposable summands in the tensor powers of representations of finite\\ngroups, over a field of arbitrary characteristic. In characteristic zero, we\\nobtain in addition a general exact formula for the growth rate and give a\\ncomplete solution to the growth problems in terms of the character table. We\\nalso provide code used to compute our formulas.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了在任意特征域上有限群表示张量幂中不可分解和数的增长率(精确和渐近)公式。在特征为零时,我们还得到了增长率的一般精确公式,并给出了用特征表解决增长问题的完整方案。我们还提供了用于计算公式的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth Problems for Representations of Finite Groups
We compute (exact and asymptotic) formulas for the growth rate of the number of indecomposable summands in the tensor powers of representations of finite groups, over a field of arbitrary characteristic. In characteristic zero, we obtain in addition a general exact formula for the growth rate and give a complete solution to the growth problems in terms of the character table. We also provide code used to compute our formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信