分类层面的第二相邻性和尖顶支持

Yuta Takaya
{"title":"分类层面的第二相邻性和尖顶支持","authors":"Yuta Takaya","doi":"arxiv-2408.04582","DOIUrl":null,"url":null,"abstract":"We prove the second adjointness in the setting of the categorical local\nLanglands correspondence. Moreover, we study the relation between Eisenstein\nseries and cuspidal supports and present a conjectural characterization of\nirreducible smooth representations with supercuspidal $L$-parameters regarding\ngeometric constant terms. The main technical ingredient is an induction\nprinciple for geometric Eisenstein series which allows us to reduce to the\nsituations already treated in the literature.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second adjointness and cuspidal supports at the categorical level\",\"authors\":\"Yuta Takaya\",\"doi\":\"arxiv-2408.04582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the second adjointness in the setting of the categorical local\\nLanglands correspondence. Moreover, we study the relation between Eisenstein\\nseries and cuspidal supports and present a conjectural characterization of\\nirreducible smooth representations with supercuspidal $L$-parameters regarding\\ngeometric constant terms. The main technical ingredient is an induction\\nprinciple for geometric Eisenstein series which allows us to reduce to the\\nsituations already treated in the literature.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在分类局部朗兰兹对应中的第二个邻接性。此外,我们还研究了爱森斯坦数列与括弧支座之间的关系,并就几何常数项提出了具有超括弧 $L$ 参数的可还原光滑表示的猜想特征。其主要技术要素是几何爱森斯坦数列的归纳原理,它使我们能够还原到文献中已经处理过的情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second adjointness and cuspidal supports at the categorical level
We prove the second adjointness in the setting of the categorical local Langlands correspondence. Moreover, we study the relation between Eisenstein series and cuspidal supports and present a conjectural characterization of irreducible smooth representations with supercuspidal $L$-parameters regarding geometric constant terms. The main technical ingredient is an induction principle for geometric Eisenstein series which allows us to reduce to the situations already treated in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信