{"title":"广义对称群的不可减字符","authors":"Huimin Gao, Naihuan Jing","doi":"arxiv-2408.04921","DOIUrl":null,"url":null,"abstract":"The paper studies how to compute irreducible characters of the generalized\nsymmetric group $C_k\\wr{S}_n$ by iterative algorithms. After reproving the\nMurnaghan-Nakayama rule by vertex algebraic method, we formulate a new\niterative formula for characters of the generalized symmetric group. As\napplications, we find a numerical relation between the character values of\n$C_k\\wr S_n$ and modular characters of $S_{kn}$.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreducible characters of the generalized symmetric group\",\"authors\":\"Huimin Gao, Naihuan Jing\",\"doi\":\"arxiv-2408.04921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies how to compute irreducible characters of the generalized\\nsymmetric group $C_k\\\\wr{S}_n$ by iterative algorithms. After reproving the\\nMurnaghan-Nakayama rule by vertex algebraic method, we formulate a new\\niterative formula for characters of the generalized symmetric group. As\\napplications, we find a numerical relation between the character values of\\n$C_k\\\\wr S_n$ and modular characters of $S_{kn}$.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Irreducible characters of the generalized symmetric group
The paper studies how to compute irreducible characters of the generalized
symmetric group $C_k\wr{S}_n$ by iterative algorithms. After reproving the
Murnaghan-Nakayama rule by vertex algebraic method, we formulate a new
iterative formula for characters of the generalized symmetric group. As
applications, we find a numerical relation between the character values of
$C_k\wr S_n$ and modular characters of $S_{kn}$.