无穷多周变数有理函数域的吕洛特定理

M. Rovinsky
{"title":"无穷多周变数有理函数域的吕洛特定理","authors":"M. Rovinsky","doi":"arxiv-2408.04028","DOIUrl":null,"url":null,"abstract":"L\\\"uroth's theorem describes the dominant maps from rational curves over a\nfield. In this note we study the dominant maps from cartesian powers $X^{\\Psi}$ of\nabsolutely irreducible varieties $X$ over a field $k$ for infinite sets $\\Psi$\nthat are equivariant with respect to all permutations of the factors $X$. At\nleast some of such maps arise as compositions\n$h:X^{\\Psi}\\xrightarrow{f^{\\Psi}}Y^{\\Psi}\\to H\\backslash Y^{\\Psi}$, where\n$X\\xrightarrow{f}Y$ is a dominant $k$-map and $H$ is an automorphism group $H$\nof $Y|k$, acting diagonally on $Y^{\\Psi}$. In characteristic 0, we show that this construction, when properly modified,\ngives all dominant equivariant maps from $X^{\\Psi}$, if $\\dim X=1$. For\narbitrary $X$, the results are only partial. In a subsequent paper, the `quasicoherent' equivariant sheaves on the targets\nof such $h$'s will be studied. Some preliminary results have already appeared\nin arXiv:math/2205.15144. A somewhat similar problem is to check, whether the irreducible invariant\nsubvarieties of $X^{\\Psi}$ arise as pullbacks under $f^{\\Psi}$ (for appropriate\n$f$'s) of subvarieties of $Y$ diagonally embedded into $Y^{\\Psi}$. This would\nbe a complement to the famous theorem of D.E.Cohen on the noetherian property\nof the symmetric ideals. We show that this is the case if $\\dim X=1$.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"307 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lüroth's theorem for fields of rational functions in infinitely many permuted variables\",\"authors\":\"M. Rovinsky\",\"doi\":\"arxiv-2408.04028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"L\\\\\\\"uroth's theorem describes the dominant maps from rational curves over a\\nfield. In this note we study the dominant maps from cartesian powers $X^{\\\\Psi}$ of\\nabsolutely irreducible varieties $X$ over a field $k$ for infinite sets $\\\\Psi$\\nthat are equivariant with respect to all permutations of the factors $X$. At\\nleast some of such maps arise as compositions\\n$h:X^{\\\\Psi}\\\\xrightarrow{f^{\\\\Psi}}Y^{\\\\Psi}\\\\to H\\\\backslash Y^{\\\\Psi}$, where\\n$X\\\\xrightarrow{f}Y$ is a dominant $k$-map and $H$ is an automorphism group $H$\\nof $Y|k$, acting diagonally on $Y^{\\\\Psi}$. In characteristic 0, we show that this construction, when properly modified,\\ngives all dominant equivariant maps from $X^{\\\\Psi}$, if $\\\\dim X=1$. For\\narbitrary $X$, the results are only partial. In a subsequent paper, the `quasicoherent' equivariant sheaves on the targets\\nof such $h$'s will be studied. Some preliminary results have already appeared\\nin arXiv:math/2205.15144. A somewhat similar problem is to check, whether the irreducible invariant\\nsubvarieties of $X^{\\\\Psi}$ arise as pullbacks under $f^{\\\\Psi}$ (for appropriate\\n$f$'s) of subvarieties of $Y$ diagonally embedded into $Y^{\\\\Psi}$. This would\\nbe a complement to the famous theorem of D.E.Cohen on the noetherian property\\nof the symmetric ideals. We show that this is the case if $\\\\dim X=1$.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"307 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

L\"uroth 定理描述了有理曲线在一个域上的支配映射。在这篇论文中,我们研究了在一个域$k$上的绝对不可还原变种$X$的笛卡尔幂$X^{/Psi}$的主映射,这些笛卡尔幂$X^{/Psi}$的无限集$\Psi$相对于因子$X$的所有排列是等变的。至少有一些这样的映射是以组合$h:X^{\Psi}\xrightarrow{f^{\Psi}}Y^{\Psi}}\to H\backslash Y^{\Psi}$的形式出现的,其中$X\xrightarrow{f}Y$是一个占优的$k$映射,而$H$是$Y|k$的一个自变群$H$,对角地作用于$Y^{\Psi}$。在特征为 0 的情况下,如果 $\dim X=1$ ,我们将证明这种构造经过适当修改后,可以给出来自 $X^{Psi}$ 的所有主导等变映射。对于任意的 $X$,结果只是部分的。在以后的论文中,我们将研究这种 $h$'s 目标上的 "类相干 "等变剪切。一些初步结果已经出现在 arXiv:math/2205.15144 中。一个有点类似的问题是检查 $X^{Psi}$的不可还原无变量子域是否作为 $Y^{Psi}$(对于适当的 $f$'s)对角嵌入 $Y^{Psi}$ 的子域的 $f^{Psi}$ 下的回拉而出现。这将是对科恩(D.E.Cohen)关于对称ideal的noetherian性质的著名定理的补充。我们证明,如果 $\dim X=1$ 时,情况就是这样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lüroth's theorem for fields of rational functions in infinitely many permuted variables
L\"uroth's theorem describes the dominant maps from rational curves over a field. In this note we study the dominant maps from cartesian powers $X^{\Psi}$ of absolutely irreducible varieties $X$ over a field $k$ for infinite sets $\Psi$ that are equivariant with respect to all permutations of the factors $X$. At least some of such maps arise as compositions $h:X^{\Psi}\xrightarrow{f^{\Psi}}Y^{\Psi}\to H\backslash Y^{\Psi}$, where $X\xrightarrow{f}Y$ is a dominant $k$-map and $H$ is an automorphism group $H$ of $Y|k$, acting diagonally on $Y^{\Psi}$. In characteristic 0, we show that this construction, when properly modified, gives all dominant equivariant maps from $X^{\Psi}$, if $\dim X=1$. For arbitrary $X$, the results are only partial. In a subsequent paper, the `quasicoherent' equivariant sheaves on the targets of such $h$'s will be studied. Some preliminary results have already appeared in arXiv:math/2205.15144. A somewhat similar problem is to check, whether the irreducible invariant subvarieties of $X^{\Psi}$ arise as pullbacks under $f^{\Psi}$ (for appropriate $f$'s) of subvarieties of $Y$ diagonally embedded into $Y^{\Psi}$. This would be a complement to the famous theorem of D.E.Cohen on the noetherian property of the symmetric ideals. We show that this is the case if $\dim X=1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信