{"title":"矩阵对的多项式相似性","authors":"Vitaliy Bondarenko, Anatoliy Petravchuk, Maryna Styopochkina","doi":"arxiv-2408.04244","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\\mathcal{M}(K)$ the\nset of all pairs of square matrices of the same size over $K.$ Pairs\n$P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\\mathcal{M}(K)$ are called similar if\n$A_2=X^{-1}A_1X$ and $B_2=X^{-1}B_1X$ for some invertible matrix $X$ over $K$.\nDenote by $\\mathcal{N}(K)$ the subset of $\\mathcal{M}(K)$, consisting of all\npairs of commuting nilpotent matrices. A pair $P$ will be called {\\it\npolynomially equivalent} to a pair $\\overline{P}=(\\overline{A}, \\overline{B})$\nif $\\overline{A}=f(A,B), \\overline{B}=g(A ,B)$ for some polynomials $f, g\\in\nK[x,y]$ satisfying the next conditions: $f(0,0)=0, g(0,0)=0$ and $ {\\rm det}\nJ(f, g)(0, 0)\\not =0,$ where $J(f, g)$ is the Jacobi matrix of polynomials\n$f(x, y)$ and $g(x, y).$ Further, pairs of matrices $P(A,B)$ and\n$\\widetilde{P}(\\widetilde{A}, \\widetilde{B})$ from $\\mathcal{N}(K)$ will be\ncalled {\\it polynomially similar} if there exists a pair\n$\\overline{P}(\\overline{A}, \\overline{B})$ from $\\mathcal{N}(K)$ such that $P$,\n$\\overline{P}$ are polynomially equivalent and $\\overline{P}$, $\\widetilde{P}$\nare similar. The main result of the paper: it is proved that the problem of\nclassifying pairs of matrices up to polynomial similarity is wild, i.e. it\ncontains the classical unsolvable problem of classifying pairs of matrices up\nto similarity.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial similarity of pairs of matrices\",\"authors\":\"Vitaliy Bondarenko, Anatoliy Petravchuk, Maryna Styopochkina\",\"doi\":\"arxiv-2408.04244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\\\\mathcal{M}(K)$ the\\nset of all pairs of square matrices of the same size over $K.$ Pairs\\n$P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\\\\mathcal{M}(K)$ are called similar if\\n$A_2=X^{-1}A_1X$ and $B_2=X^{-1}B_1X$ for some invertible matrix $X$ over $K$.\\nDenote by $\\\\mathcal{N}(K)$ the subset of $\\\\mathcal{M}(K)$, consisting of all\\npairs of commuting nilpotent matrices. A pair $P$ will be called {\\\\it\\npolynomially equivalent} to a pair $\\\\overline{P}=(\\\\overline{A}, \\\\overline{B})$\\nif $\\\\overline{A}=f(A,B), \\\\overline{B}=g(A ,B)$ for some polynomials $f, g\\\\in\\nK[x,y]$ satisfying the next conditions: $f(0,0)=0, g(0,0)=0$ and $ {\\\\rm det}\\nJ(f, g)(0, 0)\\\\not =0,$ where $J(f, g)$ is the Jacobi matrix of polynomials\\n$f(x, y)$ and $g(x, y).$ Further, pairs of matrices $P(A,B)$ and\\n$\\\\widetilde{P}(\\\\widetilde{A}, \\\\widetilde{B})$ from $\\\\mathcal{N}(K)$ will be\\ncalled {\\\\it polynomially similar} if there exists a pair\\n$\\\\overline{P}(\\\\overline{A}, \\\\overline{B})$ from $\\\\mathcal{N}(K)$ such that $P$,\\n$\\\\overline{P}$ are polynomially equivalent and $\\\\overline{P}$, $\\\\widetilde{P}$\\nare similar. The main result of the paper: it is proved that the problem of\\nclassifying pairs of matrices up to polynomial similarity is wild, i.e. it\\ncontains the classical unsolvable problem of classifying pairs of matrices up\\nto similarity.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\mathcal{M}(K)$ the
set of all pairs of square matrices of the same size over $K.$ Pairs
$P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\mathcal{M}(K)$ are called similar if
$A_2=X^{-1}A_1X$ and $B_2=X^{-1}B_1X$ for some invertible matrix $X$ over $K$.
Denote by $\mathcal{N}(K)$ the subset of $\mathcal{M}(K)$, consisting of all
pairs of commuting nilpotent matrices. A pair $P$ will be called {\it
polynomially equivalent} to a pair $\overline{P}=(\overline{A}, \overline{B})$
if $\overline{A}=f(A,B), \overline{B}=g(A ,B)$ for some polynomials $f, g\in
K[x,y]$ satisfying the next conditions: $f(0,0)=0, g(0,0)=0$ and $ {\rm det}
J(f, g)(0, 0)\not =0,$ where $J(f, g)$ is the Jacobi matrix of polynomials
$f(x, y)$ and $g(x, y).$ Further, pairs of matrices $P(A,B)$ and
$\widetilde{P}(\widetilde{A}, \widetilde{B})$ from $\mathcal{N}(K)$ will be
called {\it polynomially similar} if there exists a pair
$\overline{P}(\overline{A}, \overline{B})$ from $\mathcal{N}(K)$ such that $P$,
$\overline{P}$ are polynomially equivalent and $\overline{P}$, $\widetilde{P}$
are similar. The main result of the paper: it is proved that the problem of
classifying pairs of matrices up to polynomial similarity is wild, i.e. it
contains the classical unsolvable problem of classifying pairs of matrices up
to similarity.