A_n$ 型群集代数的对数凹性

Zhichao Chen, Guanhua Huang, Zhe Sun
{"title":"A_n$ 型群集代数的对数凹性","authors":"Zhichao Chen, Guanhua Huang, Zhe Sun","doi":"arxiv-2408.03792","DOIUrl":null,"url":null,"abstract":"After Gross, Hacking, Keel, Kontsevich [GHKK18] introduced the theta basis\nwhich is shown to be indexed by its highest term exponent in cluster variables\nof any given seed, we are interested in all the non-vanishing exponents in\nthese cluster variables. We prove that the coefficients of the exponents of any\ncluster variable of type $A_n$ are log-concave. We show that the cluster\nmonomials of $A_2$ type are log-concave. As for larger generality, we\nconjecture that the log-concavity of cluster monomials is also true.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Log-concavity of cluster algebras of type $A_n$\",\"authors\":\"Zhichao Chen, Guanhua Huang, Zhe Sun\",\"doi\":\"arxiv-2408.03792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After Gross, Hacking, Keel, Kontsevich [GHKK18] introduced the theta basis\\nwhich is shown to be indexed by its highest term exponent in cluster variables\\nof any given seed, we are interested in all the non-vanishing exponents in\\nthese cluster variables. We prove that the coefficients of the exponents of any\\ncluster variable of type $A_n$ are log-concave. We show that the cluster\\nmonomials of $A_2$ type are log-concave. As for larger generality, we\\nconjecture that the log-concavity of cluster monomials is also true.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在格罗斯、哈金、基尔和康采维奇[GHKK18]介绍了θ基之后,我们对这些簇变量中所有不相等的指数感兴趣。我们证明,任何 $A_n$ 类型的聚类变量的指数系数都是对数凹的。我们证明了 $A_2$ 类型的聚类自治变量是对数凹的。至于更大的一般性,我们猜想簇单项式的对数凹性也是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log-concavity of cluster algebras of type $A_n$
After Gross, Hacking, Keel, Kontsevich [GHKK18] introduced the theta basis which is shown to be indexed by its highest term exponent in cluster variables of any given seed, we are interested in all the non-vanishing exponents in these cluster variables. We prove that the coefficients of the exponents of any cluster variable of type $A_n$ are log-concave. We show that the cluster monomials of $A_2$ type are log-concave. As for larger generality, we conjecture that the log-concavity of cluster monomials is also true.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信