Sabrina De Capitani di Vimercati;Dario Facchinetti;Sara Foresti;Gianluca Oldani;Stefano Paraboschi;Matthew Rossi;Pierangela Samarati
{"title":"加密数据的多维平面索引","authors":"Sabrina De Capitani di Vimercati;Dario Facchinetti;Sara Foresti;Gianluca Oldani;Stefano Paraboschi;Matthew Rossi;Pierangela Samarati","doi":"10.1109/TCC.2024.3408905","DOIUrl":null,"url":null,"abstract":"We address the problem of indexing encrypted data outsourced to an external cloud server to support server-side execution of multi-attribute queries. Our approach partitions the dataset in groups with the same number of tuples, and associates all tuples in a group with the same combination of index values, so to guarantee protection against static inferences. Our indexing approach does not require any modifications to the server-side software stack, and requires limited storage at the client for query support. The experimental evaluation considers, for the storage of the encrypted and indexed dataset, both a relational database (PostgreSQL) and a key-value database (Redis). We carried out extensive experiments evaluating client-storage requirements and query performance. The experimental results confirm the efficiency of our solution. The proposal is supported by an open source implementation.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 3","pages":"928-941"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547318","citationCount":"0","resultStr":"{\"title\":\"Multi-Dimensional Flat Indexing for Encrypted Data\",\"authors\":\"Sabrina De Capitani di Vimercati;Dario Facchinetti;Sara Foresti;Gianluca Oldani;Stefano Paraboschi;Matthew Rossi;Pierangela Samarati\",\"doi\":\"10.1109/TCC.2024.3408905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of indexing encrypted data outsourced to an external cloud server to support server-side execution of multi-attribute queries. Our approach partitions the dataset in groups with the same number of tuples, and associates all tuples in a group with the same combination of index values, so to guarantee protection against static inferences. Our indexing approach does not require any modifications to the server-side software stack, and requires limited storage at the client for query support. The experimental evaluation considers, for the storage of the encrypted and indexed dataset, both a relational database (PostgreSQL) and a key-value database (Redis). We carried out extensive experiments evaluating client-storage requirements and query performance. The experimental results confirm the efficiency of our solution. The proposal is supported by an open source implementation.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 3\",\"pages\":\"928-941\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547318\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10547318/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10547318/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-Dimensional Flat Indexing for Encrypted Data
We address the problem of indexing encrypted data outsourced to an external cloud server to support server-side execution of multi-attribute queries. Our approach partitions the dataset in groups with the same number of tuples, and associates all tuples in a group with the same combination of index values, so to guarantee protection against static inferences. Our indexing approach does not require any modifications to the server-side software stack, and requires limited storage at the client for query support. The experimental evaluation considers, for the storage of the encrypted and indexed dataset, both a relational database (PostgreSQL) and a key-value database (Redis). We carried out extensive experiments evaluating client-storage requirements and query performance. The experimental results confirm the efficiency of our solution. The proposal is supported by an open source implementation.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.