Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Esmaeil Adabifiroozjaei, Ruiwen Xie, Eren Foya, Dominik Ohmer, Konstantin Skokov, Leopoldo Molina-Luna, Oliver Gutfleisch, Hongbin Zhang, Bai-Xiang Xu
{"title":"SmCo-1:7 磁体中纳米结构对矫顽力的影响:高通量微磁数据的机器学习","authors":"Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Esmaeil Adabifiroozjaei, Ruiwen Xie, Eren Foya, Dominik Ohmer, Konstantin Skokov, Leopoldo Molina-Luna, Oliver Gutfleisch, Hongbin Zhang, Bai-Xiang Xu","doi":"arxiv-2408.03198","DOIUrl":null,"url":null,"abstract":"Around 17,000 micromagnetic simulations were performed with a wide variation\nof geometric and magnetic parameters of different cellular nanostructures in\nthe samarium-cobalt-based 1:7-type (SmCo-1:7) magnets. A forward prediction\nneural network (NN) model is trained to unveil the influence of these\nparameters on the coercivity of materials, along with the sensitivity analysis.\nResults indicate the important role of the 1:5-phase in enhancing coercivity.\nMoreover, an inverse design NN model is obtained to suggest the nanostructure\nfor a queried coercivity.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"307 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coercivity influence of nanostructure in SmCo-1:7 magnets: Machine learning of high-throughput micromagnetic data\",\"authors\":\"Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost, Esmaeil Adabifiroozjaei, Ruiwen Xie, Eren Foya, Dominik Ohmer, Konstantin Skokov, Leopoldo Molina-Luna, Oliver Gutfleisch, Hongbin Zhang, Bai-Xiang Xu\",\"doi\":\"arxiv-2408.03198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Around 17,000 micromagnetic simulations were performed with a wide variation\\nof geometric and magnetic parameters of different cellular nanostructures in\\nthe samarium-cobalt-based 1:7-type (SmCo-1:7) magnets. A forward prediction\\nneural network (NN) model is trained to unveil the influence of these\\nparameters on the coercivity of materials, along with the sensitivity analysis.\\nResults indicate the important role of the 1:5-phase in enhancing coercivity.\\nMoreover, an inverse design NN model is obtained to suggest the nanostructure\\nfor a queried coercivity.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"307 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对钐钴基 1:7 型(SmCo-1:7)磁体中不同细胞纳米结构的几何和磁性参数进行了约 17,000 次微磁模拟。结果表明,1:5 相在提高矫顽力方面起着重要作用。此外,还建立了一个反向设计 NN 模型,为查询矫顽力的纳米结构提供建议。
Coercivity influence of nanostructure in SmCo-1:7 magnets: Machine learning of high-throughput micromagnetic data
Around 17,000 micromagnetic simulations were performed with a wide variation
of geometric and magnetic parameters of different cellular nanostructures in
the samarium-cobalt-based 1:7-type (SmCo-1:7) magnets. A forward prediction
neural network (NN) model is trained to unveil the influence of these
parameters on the coercivity of materials, along with the sensitivity analysis.
Results indicate the important role of the 1:5-phase in enhancing coercivity.
Moreover, an inverse design NN model is obtained to suggest the nanostructure
for a queried coercivity.