Hatam Hardani, Mahmoud Afshari, Mohammad Reza Samadi, Hossein Afshari, Santi Ago López
{"title":"通过优化 FFF 工艺参数提高聚乳酸/碳纳米管复合材料的拉伸模量和抗弯强度","authors":"Hatam Hardani, Mahmoud Afshari, Mohammad Reza Samadi, Hossein Afshari, Santi Ago López","doi":"10.1177/08927057241268831","DOIUrl":null,"url":null,"abstract":"Fused-filament fabrication (FFF) is one of the most common 3D printing methods for thermoplastic polymers and composite materials because it is easy to use and is low-cost. The printed polymer parts for industrial applications require desirable mechanical properties. Therefore, in the present research, the process parameters of fused filament fabrication are optimized to enhance the Young’s modulus and bending resistance of polylactic acid/carbon nanotube (PLA/CNT) composite. For this purpose, the response surface method (RSM) and desirability function technique (DFT) are applied to find the optimal values of the effective parameters of CNT content, printing speed and nozzle temperature. The printed samples were examined by using DSC, TGA and SEM analyses. The results of DSC and TGA analyses indicated that the addition of CNT into PLA enhanced the thermal stability of PLA/CNT composite. It was also observed from the optimization results that the Young’s modulus and bending resistance of PLA/CNT composite improved at CNT content of 2.9 wt%, printing speed of 20 mm/s and nozzle temperature of 210°C.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhancement in the tensile modulus and bending resistance of polylactic acid/carbon nanotube composite by optimizing FFF process parameters\",\"authors\":\"Hatam Hardani, Mahmoud Afshari, Mohammad Reza Samadi, Hossein Afshari, Santi Ago López\",\"doi\":\"10.1177/08927057241268831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fused-filament fabrication (FFF) is one of the most common 3D printing methods for thermoplastic polymers and composite materials because it is easy to use and is low-cost. The printed polymer parts for industrial applications require desirable mechanical properties. Therefore, in the present research, the process parameters of fused filament fabrication are optimized to enhance the Young’s modulus and bending resistance of polylactic acid/carbon nanotube (PLA/CNT) composite. For this purpose, the response surface method (RSM) and desirability function technique (DFT) are applied to find the optimal values of the effective parameters of CNT content, printing speed and nozzle temperature. The printed samples were examined by using DSC, TGA and SEM analyses. The results of DSC and TGA analyses indicated that the addition of CNT into PLA enhanced the thermal stability of PLA/CNT composite. It was also observed from the optimization results that the Young’s modulus and bending resistance of PLA/CNT composite improved at CNT content of 2.9 wt%, printing speed of 20 mm/s and nozzle temperature of 210°C.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241268831\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241268831","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
An enhancement in the tensile modulus and bending resistance of polylactic acid/carbon nanotube composite by optimizing FFF process parameters
Fused-filament fabrication (FFF) is one of the most common 3D printing methods for thermoplastic polymers and composite materials because it is easy to use and is low-cost. The printed polymer parts for industrial applications require desirable mechanical properties. Therefore, in the present research, the process parameters of fused filament fabrication are optimized to enhance the Young’s modulus and bending resistance of polylactic acid/carbon nanotube (PLA/CNT) composite. For this purpose, the response surface method (RSM) and desirability function technique (DFT) are applied to find the optimal values of the effective parameters of CNT content, printing speed and nozzle temperature. The printed samples were examined by using DSC, TGA and SEM analyses. The results of DSC and TGA analyses indicated that the addition of CNT into PLA enhanced the thermal stability of PLA/CNT composite. It was also observed from the optimization results that the Young’s modulus and bending resistance of PLA/CNT composite improved at CNT content of 2.9 wt%, printing speed of 20 mm/s and nozzle temperature of 210°C.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).