系统研究 ZrX2N4(X = Si,Ge)单层材料的热电特性

Chayan Das, Dibyajyoti Saikia, Satyajit Sahu
{"title":"系统研究 ZrX2N4(X = Si,Ge)单层材料的热电特性","authors":"Chayan Das, Dibyajyoti Saikia, Satyajit Sahu","doi":"arxiv-2408.03971","DOIUrl":null,"url":null,"abstract":"In the past decade, it has been demonstrated that monolayers of metal\ndichalcogenides are well-suited for thermoelectric applications. ZrX2N4 (X =\nSi, Ge) is a reasonable choice for thermoelectric applications when considering\na favorable value of the figure of merit in two-dimensional (2D) layered\nmaterials. In this study, we examined the thermoelectric characteristics of the\ntwo-dimensional monolayer of ZrX2N4 (where X can be either Si or Ge) using a\ncombination of Density Functional Theory (DFT) and the Boltzmann Transport\nEquation (BTE). A thermoelectric figure of merit (ZT) of 0.90 was achieved at a\ntemperature of 900 K for p-type ZrGe2N4, while a ZT of 0.83 was reported for\nn-type ZrGe2N4 at the same temperature. In addition, the ZrGe2N4 material\nexhibited a thermoelectric figure of merit (ZT) of around 0.7 at room\ntemperature for the p-type. Conversely, the ZrSi2N4 exhibited a relatively\nlower thermoelectric figure of merit (ZT) at ambient temperature. At higher\ntemperatures, the ZT value experiences a substantial increase, reaching 0.89\nand 0.82 for p-type and n-type materials, respectively, at 900 K. Through our\nanalysis of the electronic band structure, we have determined that ZrSi2N4 and\nZrGe2N4 exhibit indirect bandgaps (BG) of 2.74 eV and 2.66 eV, respectively, as\nper the Heyd-Scuseria-Ernzerhof (HSE) approximation.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic Investigation of Thermoelectric Properties of Monolayers of ZrX2N4(X = Si, Ge)\",\"authors\":\"Chayan Das, Dibyajyoti Saikia, Satyajit Sahu\",\"doi\":\"arxiv-2408.03971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, it has been demonstrated that monolayers of metal\\ndichalcogenides are well-suited for thermoelectric applications. ZrX2N4 (X =\\nSi, Ge) is a reasonable choice for thermoelectric applications when considering\\na favorable value of the figure of merit in two-dimensional (2D) layered\\nmaterials. In this study, we examined the thermoelectric characteristics of the\\ntwo-dimensional monolayer of ZrX2N4 (where X can be either Si or Ge) using a\\ncombination of Density Functional Theory (DFT) and the Boltzmann Transport\\nEquation (BTE). A thermoelectric figure of merit (ZT) of 0.90 was achieved at a\\ntemperature of 900 K for p-type ZrGe2N4, while a ZT of 0.83 was reported for\\nn-type ZrGe2N4 at the same temperature. In addition, the ZrGe2N4 material\\nexhibited a thermoelectric figure of merit (ZT) of around 0.7 at room\\ntemperature for the p-type. Conversely, the ZrSi2N4 exhibited a relatively\\nlower thermoelectric figure of merit (ZT) at ambient temperature. At higher\\ntemperatures, the ZT value experiences a substantial increase, reaching 0.89\\nand 0.82 for p-type and n-type materials, respectively, at 900 K. Through our\\nanalysis of the electronic band structure, we have determined that ZrSi2N4 and\\nZrGe2N4 exhibit indirect bandgaps (BG) of 2.74 eV and 2.66 eV, respectively, as\\nper the Heyd-Scuseria-Ernzerhof (HSE) approximation.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,已经证明单层金属二钙化物非常适合热电应用。考虑到二维(2D)层状材料的优越性,ZrX2N4(X = Si、Ge)是热电应用的合理选择。在本研究中,我们结合密度泛函理论(DFT)和玻尔兹曼输运方程(BTE),研究了 ZrX2N4(其中 X 可以是 Si 或 Ge)二维单层材料的热电特性。在 900 K 的温度下,p 型 ZrGe2N4 的热电功勋值 (ZT) 达到 0.90,而在相同温度下,n 型 ZrGe2N4 的 ZT 为 0.83。此外,p 型 ZrGe2N4 材料在室温下的热电功勋值(ZT)约为 0.7。相反,ZrSi2N4 材料在室温下的热电功勋值(ZT)相对较低。通过对电子能带结构的分析,我们确定 ZrSi2N4 和 ZrGe2N4 根据海德-斯库塞亚-恩泽霍夫(HSE)近似法显示的间接带隙(BG)分别为 2.74 eV 和 2.66 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic Investigation of Thermoelectric Properties of Monolayers of ZrX2N4(X = Si, Ge)
In the past decade, it has been demonstrated that monolayers of metal dichalcogenides are well-suited for thermoelectric applications. ZrX2N4 (X = Si, Ge) is a reasonable choice for thermoelectric applications when considering a favorable value of the figure of merit in two-dimensional (2D) layered materials. In this study, we examined the thermoelectric characteristics of the two-dimensional monolayer of ZrX2N4 (where X can be either Si or Ge) using a combination of Density Functional Theory (DFT) and the Boltzmann Transport Equation (BTE). A thermoelectric figure of merit (ZT) of 0.90 was achieved at a temperature of 900 K for p-type ZrGe2N4, while a ZT of 0.83 was reported for n-type ZrGe2N4 at the same temperature. In addition, the ZrGe2N4 material exhibited a thermoelectric figure of merit (ZT) of around 0.7 at room temperature for the p-type. Conversely, the ZrSi2N4 exhibited a relatively lower thermoelectric figure of merit (ZT) at ambient temperature. At higher temperatures, the ZT value experiences a substantial increase, reaching 0.89 and 0.82 for p-type and n-type materials, respectively, at 900 K. Through our analysis of the electronic band structure, we have determined that ZrSi2N4 and ZrGe2N4 exhibit indirect bandgaps (BG) of 2.74 eV and 2.66 eV, respectively, as per the Heyd-Scuseria-Ernzerhof (HSE) approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信