薛定谔网络薛定谔方程的通用神经网络求解器

Yaolong Zhang, Bin Jiang, Hua Guo
{"title":"薛定谔网络薛定谔方程的通用神经网络求解器","authors":"Yaolong Zhang, Bin Jiang, Hua Guo","doi":"arxiv-2408.04497","DOIUrl":null,"url":null,"abstract":"Recent advances in machine learning have facilitated numerically accurate\nsolution of the electronic Schr\\\"{o}dinger equation (SE) by integrating various\nneural network (NN)-based wavefunction ansatzes with variational Monte Carlo\nmethods. Nevertheless, such NN-based methods are all based on the\nBorn-Oppenheimer approximation (BOA) and require computationally expensive\ntraining for each nuclear configuration. In this work, we propose a novel NN\narchitecture, Schr\\\"{o}dingerNet, to solve the full electronic-nuclear SE by\ndefining a loss function designed to equalize local energies across the system.\nThis approach is based on a rotationally equivariant total wavefunction ansatz\nthat includes both nuclear and electronic coordinates. This strategy not only\nallows for the efficient and accurate generation of a continuous potential\nenergy surface at any geometry within the well-sampled nuclear configuration\nspace, but also incorporates non-BOA corrections through a single training\nprocess. Comparison with benchmarks of atomic and molecular systems\ndemonstrates its accuracy and efficiency.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SchrödingerNet: A Universal Neural Network Solver for The Schrödinger Equation\",\"authors\":\"Yaolong Zhang, Bin Jiang, Hua Guo\",\"doi\":\"arxiv-2408.04497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in machine learning have facilitated numerically accurate\\nsolution of the electronic Schr\\\\\\\"{o}dinger equation (SE) by integrating various\\nneural network (NN)-based wavefunction ansatzes with variational Monte Carlo\\nmethods. Nevertheless, such NN-based methods are all based on the\\nBorn-Oppenheimer approximation (BOA) and require computationally expensive\\ntraining for each nuclear configuration. In this work, we propose a novel NN\\narchitecture, Schr\\\\\\\"{o}dingerNet, to solve the full electronic-nuclear SE by\\ndefining a loss function designed to equalize local energies across the system.\\nThis approach is based on a rotationally equivariant total wavefunction ansatz\\nthat includes both nuclear and electronic coordinates. This strategy not only\\nallows for the efficient and accurate generation of a continuous potential\\nenergy surface at any geometry within the well-sampled nuclear configuration\\nspace, but also incorporates non-BOA corrections through a single training\\nprocess. Comparison with benchmarks of atomic and molecular systems\\ndemonstrates its accuracy and efficiency.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过将各种基于神经网络(NN)的波函数解析与变异蒙特卡洛方法相结合,机器学习的最新进展促进了电子薛定谔方程(SE)的精确数值求解。然而,这些基于神经网络的方法都是基于天生-奥本海默近似(BOA)的,需要对每个核构型进行昂贵的计算训练。在这项工作中,我们提出了一种新颖的 NN 架构--Schr\"{o}dingerNet,通过定义一个旨在均衡整个系统局部能量的损失函数来求解全电子-核 SE。这种策略不仅可以在采样良好的核构型空间内的任何几何形状上高效、准确地生成连续势能面,还可以通过单一训练过程纳入非BOA 修正。与原子和分子系统基准的比较证明了它的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SchrödingerNet: A Universal Neural Network Solver for The Schrödinger Equation
Recent advances in machine learning have facilitated numerically accurate solution of the electronic Schr\"{o}dinger equation (SE) by integrating various neural network (NN)-based wavefunction ansatzes with variational Monte Carlo methods. Nevertheless, such NN-based methods are all based on the Born-Oppenheimer approximation (BOA) and require computationally expensive training for each nuclear configuration. In this work, we propose a novel NN architecture, Schr\"{o}dingerNet, to solve the full electronic-nuclear SE by defining a loss function designed to equalize local energies across the system. This approach is based on a rotationally equivariant total wavefunction ansatz that includes both nuclear and electronic coordinates. This strategy not only allows for the efficient and accurate generation of a continuous potential energy surface at any geometry within the well-sampled nuclear configuration space, but also incorporates non-BOA corrections through a single training process. Comparison with benchmarks of atomic and molecular systems demonstrates its accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信