Tao Wu;Yuben Qu;Chunsheng Liu;Haipeng Dai;Chao Dong;Jiannong Cao
{"title":"为多细胞网络中的边缘智能提供低成本高效率的联合学习","authors":"Tao Wu;Yuben Qu;Chunsheng Liu;Haipeng Dai;Chao Dong;Jiannong Cao","doi":"10.1109/TNET.2024.3423316","DOIUrl":null,"url":null,"abstract":"The proliferation of various mobile devices with massive data and improving computing capacity have prompted the rise of edge artificial intelligence (Edge AI). Without revealing the raw data, federated learning (FL) becomes a promising distributed learning paradigm that caters to the above trend. Nevertheless, due to periodical communication for model aggregation, it would incur inevitable costs in terms of training latency and energy consumption, especially in multi-cell edge networks. Thus motivated, we study the joint edge aggregation and association problem to achieve the cost-efficient FL performance, where the model aggregation over multiple cells just happens at the network edge. After analyzing the NP-hardness with complex coupled variables, we transform it into a set function optimization problem and prove the objective function shows neither submodular nor supermodular property. By decomposing the complex objective function, we reconstruct a substitute function with the supermodularity and the bounded gap. On this basis, we design a two-stage search-based algorithm with theoretical performance guarantee. We further extend to the case of flexible bandwidth allocation and design the decoupled resource allocation algorithm with reduced computation size. Finally, extensive simulations and field experiments based on the testbed are conducted to validate both the effectiveness and near-optimality of our proposed solution.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 5","pages":"4472-4487"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Efficient Federated Learning for Edge Intelligence in Multi-Cell Networks\",\"authors\":\"Tao Wu;Yuben Qu;Chunsheng Liu;Haipeng Dai;Chao Dong;Jiannong Cao\",\"doi\":\"10.1109/TNET.2024.3423316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of various mobile devices with massive data and improving computing capacity have prompted the rise of edge artificial intelligence (Edge AI). Without revealing the raw data, federated learning (FL) becomes a promising distributed learning paradigm that caters to the above trend. Nevertheless, due to periodical communication for model aggregation, it would incur inevitable costs in terms of training latency and energy consumption, especially in multi-cell edge networks. Thus motivated, we study the joint edge aggregation and association problem to achieve the cost-efficient FL performance, where the model aggregation over multiple cells just happens at the network edge. After analyzing the NP-hardness with complex coupled variables, we transform it into a set function optimization problem and prove the objective function shows neither submodular nor supermodular property. By decomposing the complex objective function, we reconstruct a substitute function with the supermodularity and the bounded gap. On this basis, we design a two-stage search-based algorithm with theoretical performance guarantee. We further extend to the case of flexible bandwidth allocation and design the decoupled resource allocation algorithm with reduced computation size. Finally, extensive simulations and field experiments based on the testbed are conducted to validate both the effectiveness and near-optimality of our proposed solution.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 5\",\"pages\":\"4472-4487\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10628052/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10628052/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Cost-Efficient Federated Learning for Edge Intelligence in Multi-Cell Networks
The proliferation of various mobile devices with massive data and improving computing capacity have prompted the rise of edge artificial intelligence (Edge AI). Without revealing the raw data, federated learning (FL) becomes a promising distributed learning paradigm that caters to the above trend. Nevertheless, due to periodical communication for model aggregation, it would incur inevitable costs in terms of training latency and energy consumption, especially in multi-cell edge networks. Thus motivated, we study the joint edge aggregation and association problem to achieve the cost-efficient FL performance, where the model aggregation over multiple cells just happens at the network edge. After analyzing the NP-hardness with complex coupled variables, we transform it into a set function optimization problem and prove the objective function shows neither submodular nor supermodular property. By decomposing the complex objective function, we reconstruct a substitute function with the supermodularity and the bounded gap. On this basis, we design a two-stage search-based algorithm with theoretical performance guarantee. We further extend to the case of flexible bandwidth allocation and design the decoupled resource allocation algorithm with reduced computation size. Finally, extensive simulations and field experiments based on the testbed are conducted to validate both the effectiveness and near-optimality of our proposed solution.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.