名称分配交替名义自动机

Florian Frank, Daniel Hausmann, Stefan Milius, Lutz Schröder, Henning Urbat
{"title":"名称分配交替名义自动机","authors":"Florian Frank, Daniel Hausmann, Stefan Milius, Lutz Schröder, Henning Urbat","doi":"arxiv-2408.03658","DOIUrl":null,"url":null,"abstract":"Formal languages over infinite alphabets serve as abstractions of structures\nand processes carrying data. Automata models over infinite alphabets, such as\nclassical register automata or, equivalently, nominal orbit-finite automata,\ntend to have computationally hard or even undecidable reasoning problems unless\nstringent restrictions are imposed on either the power of control or the number\nof registers. This has been shown to be ameliorated in automata models with\nname allocation such as regular nondeterministic nominal automata, which allow\nfor deciding language inclusion in elementary complexity even with unboundedly\nmany registers while retaining a reasonable level of expressiveness. In the\npresent work, we demonstrate that elementary complexity survives under\nextending the power of control to alternation: We introduce regular alternating\nnominal automata (RANAs), and show that their non-emptiness and inclusion\nproblems have elementary complexity even when the number of registers is\nunbounded. Moreover, we show that RANAs allow for nearly complete\nde-alternation, specifically de-alternation up to a single deadlocked universal\nstate.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternating Nominal Automata with Name Allocation\",\"authors\":\"Florian Frank, Daniel Hausmann, Stefan Milius, Lutz Schröder, Henning Urbat\",\"doi\":\"arxiv-2408.03658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formal languages over infinite alphabets serve as abstractions of structures\\nand processes carrying data. Automata models over infinite alphabets, such as\\nclassical register automata or, equivalently, nominal orbit-finite automata,\\ntend to have computationally hard or even undecidable reasoning problems unless\\nstringent restrictions are imposed on either the power of control or the number\\nof registers. This has been shown to be ameliorated in automata models with\\nname allocation such as regular nondeterministic nominal automata, which allow\\nfor deciding language inclusion in elementary complexity even with unboundedly\\nmany registers while retaining a reasonable level of expressiveness. In the\\npresent work, we demonstrate that elementary complexity survives under\\nextending the power of control to alternation: We introduce regular alternating\\nnominal automata (RANAs), and show that their non-emptiness and inclusion\\nproblems have elementary complexity even when the number of registers is\\nunbounded. Moreover, we show that RANAs allow for nearly complete\\nde-alternation, specifically de-alternation up to a single deadlocked universal\\nstate.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无限字母表上的形式语言是对结构和携带数据的过程的抽象。无限字母表上的自动机模型,如经典寄存器自动机或等价的标称轨道无限自动机,除非对控制能力或寄存器数量施加严格限制,否则往往会出现难以计算甚至无法判定的推理问题。这种情况在有名称分配的自动机模型中得到了改善,比如正则非决定性标称自动机,它允许在基本复杂度中决定语言的包含,即使有无限多的寄存器,也能保持合理的表达能力。在目前的工作中,我们证明了基本复杂性可以在控制权过度扩展到交替的情况下存活下来:我们引入了正则交替全称自动机(RANAs),并证明即使寄存器数量无界,其非emptiness和包含问题也具有基本复杂性。此外,我们还证明了 RANAs 允许近乎完整的交替,特别是去交替到单个死锁通用状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternating Nominal Automata with Name Allocation
Formal languages over infinite alphabets serve as abstractions of structures and processes carrying data. Automata models over infinite alphabets, such as classical register automata or, equivalently, nominal orbit-finite automata, tend to have computationally hard or even undecidable reasoning problems unless stringent restrictions are imposed on either the power of control or the number of registers. This has been shown to be ameliorated in automata models with name allocation such as regular nondeterministic nominal automata, which allow for deciding language inclusion in elementary complexity even with unboundedly many registers while retaining a reasonable level of expressiveness. In the present work, we demonstrate that elementary complexity survives under extending the power of control to alternation: We introduce regular alternating nominal automata (RANAs), and show that their non-emptiness and inclusion problems have elementary complexity even when the number of registers is unbounded. Moreover, we show that RANAs allow for nearly complete de-alternation, specifically de-alternation up to a single deadlocked universal state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信