带扇形扩散器的离心压缩机级旋转滞流的实验和全缺口模拟分析

IF 2 3区 工程技术 Q3 MECHANICS
Yufang Zhang, Shuai Li, Hechun Yu, Linlin Cui
{"title":"带扇形扩散器的离心压缩机级旋转滞流的实验和全缺口模拟分析","authors":"Yufang Zhang, Shuai Li, Hechun Yu, Linlin Cui","doi":"10.1007/s10494-024-00578-8","DOIUrl":null,"url":null,"abstract":"<p>Flow instability such as rotating stall and even surge occurs when the centrifugal compressor stage operates under low flow conditions. This phenomenon is an extremely complex dynamic process, and it is closely related to the aerodynamic performance and internal flow of the stage. Therefore, it is necessary to study the flow development characteristics in the stage. This paper employs experimental measurement and full-annulus numerical simulation to investigate the effects of diffuser stall on the aerodynamic performance of the compressor and the internal flow of the impeller. The propagation direction, speed, evolution characteristics, and the number of the stall cell were obtained by experimental measurement, and the numerical simulation method was verified. The numerical results that there is a stall limit cycle with counter-clockwise rotation between the flow rate and total pressure ratio of the compressor when the diffuser stalls. Meanwhile, it is found that the stall limit cycle is closely related to the separation strength of the internal flow in the compressor. Finally, the coherent flow structure near the vane shroud side is identified by the modal decomposition methods when the diffuser stalls. The research results in this paper promote an in-depth understanding of the stall mechanism of centrifugal compressors.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"22 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Full-Annulus Simulation Analysis of the Rotating Stall in a Centrifugal Compressor Stage with a Vaned Diffuser\",\"authors\":\"Yufang Zhang, Shuai Li, Hechun Yu, Linlin Cui\",\"doi\":\"10.1007/s10494-024-00578-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow instability such as rotating stall and even surge occurs when the centrifugal compressor stage operates under low flow conditions. This phenomenon is an extremely complex dynamic process, and it is closely related to the aerodynamic performance and internal flow of the stage. Therefore, it is necessary to study the flow development characteristics in the stage. This paper employs experimental measurement and full-annulus numerical simulation to investigate the effects of diffuser stall on the aerodynamic performance of the compressor and the internal flow of the impeller. The propagation direction, speed, evolution characteristics, and the number of the stall cell were obtained by experimental measurement, and the numerical simulation method was verified. The numerical results that there is a stall limit cycle with counter-clockwise rotation between the flow rate and total pressure ratio of the compressor when the diffuser stalls. Meanwhile, it is found that the stall limit cycle is closely related to the separation strength of the internal flow in the compressor. Finally, the coherent flow structure near the vane shroud side is identified by the modal decomposition methods when the diffuser stalls. The research results in this paper promote an in-depth understanding of the stall mechanism of centrifugal compressors.</p>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10494-024-00578-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10494-024-00578-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

当离心式压缩机级在低流量条件下运行时,会出现流动不稳定现象,如旋转失速甚至激增。这种现象是一个极其复杂的动态过程,与压缩级的空气动力性能和内部流动密切相关。因此,有必要研究级内的流动发展特征。本文采用实验测量和全量子数值模拟的方法,研究了扩散器失速对压缩机气动性能和叶轮内部流动的影响。通过实验测量获得了滞流单元的传播方向、速度、演变特征和数量,并对数值模拟方法进行了验证。数值结果表明,当扩散器失速时,压缩机的流量和总压比之间存在一个逆时针旋转的失速极限循环。同时发现,失速极限周期与压缩机内部流动的分离强度密切相关。最后,通过模态分解方法确定了扩散器失速时叶片护罩侧附近的相干流结构。本文的研究成果促进了对离心压缩机失速机理的深入理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental and Full-Annulus Simulation Analysis of the Rotating Stall in a Centrifugal Compressor Stage with a Vaned Diffuser

Experimental and Full-Annulus Simulation Analysis of the Rotating Stall in a Centrifugal Compressor Stage with a Vaned Diffuser

Flow instability such as rotating stall and even surge occurs when the centrifugal compressor stage operates under low flow conditions. This phenomenon is an extremely complex dynamic process, and it is closely related to the aerodynamic performance and internal flow of the stage. Therefore, it is necessary to study the flow development characteristics in the stage. This paper employs experimental measurement and full-annulus numerical simulation to investigate the effects of diffuser stall on the aerodynamic performance of the compressor and the internal flow of the impeller. The propagation direction, speed, evolution characteristics, and the number of the stall cell were obtained by experimental measurement, and the numerical simulation method was verified. The numerical results that there is a stall limit cycle with counter-clockwise rotation between the flow rate and total pressure ratio of the compressor when the diffuser stalls. Meanwhile, it is found that the stall limit cycle is closely related to the separation strength of the internal flow in the compressor. Finally, the coherent flow structure near the vane shroud side is identified by the modal decomposition methods when the diffuser stalls. The research results in this paper promote an in-depth understanding of the stall mechanism of centrifugal compressors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信