具有实积分流形的全纯向量场

Martin Kolář, Ilya Kossovskiy, Bernhard Lamel
{"title":"具有实积分流形的全纯向量场","authors":"Martin Kolář, Ilya Kossovskiy, Bernhard Lamel","doi":"arxiv-2408.05186","DOIUrl":null,"url":null,"abstract":"We classify singular holomorphic vector fields in two-dimensional complex\nspace admitting a (Levi-nonflat) real-analytic invariant 3-fold through the\nsingularity. In this way, we complete the classification of infinitesimal\nsymmetries of real-analytic Levi-nonflat hypersurfaces in complex two-space.\nThe classification of holomorphic vector fields obtained in the paper has very\ninteresting overlaps with the recent Lombardi-Stolovitch classification theory\nfor holomorphic vector fields at a singularity. In particular, we show that\nmost of the resonances arising in Lombardi-Stolovitch theory do not occur under\nthe presence of (Levi-nonflat) integral manifolds.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic vector fields with real integral manifolds\",\"authors\":\"Martin Kolář, Ilya Kossovskiy, Bernhard Lamel\",\"doi\":\"arxiv-2408.05186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify singular holomorphic vector fields in two-dimensional complex\\nspace admitting a (Levi-nonflat) real-analytic invariant 3-fold through the\\nsingularity. In this way, we complete the classification of infinitesimal\\nsymmetries of real-analytic Levi-nonflat hypersurfaces in complex two-space.\\nThe classification of holomorphic vector fields obtained in the paper has very\\ninteresting overlaps with the recent Lombardi-Stolovitch classification theory\\nfor holomorphic vector fields at a singularity. In particular, we show that\\nmost of the resonances arising in Lombardi-Stolovitch theory do not occur under\\nthe presence of (Levi-nonflat) integral manifolds.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对二维复空间中通过奇异性接纳(Levi-non-flat)实解析不变三折叠的奇异全形向量场进行了分类。这样,我们就完成了复二维空间中实解析列维-非平坦超曲面的无穷小不对称分类。论文中得到的全纯向量场分类与最近关于奇点处全纯向量场的隆巴迪-斯托洛维奇分类理论有非常有趣的重叠。特别是,我们证明了伦巴第-斯托洛维奇理论中产生的大部分共振在(列维-非平坦)积分流形存在的情况下不会发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic vector fields with real integral manifolds
We classify singular holomorphic vector fields in two-dimensional complex space admitting a (Levi-nonflat) real-analytic invariant 3-fold through the singularity. In this way, we complete the classification of infinitesimal symmetries of real-analytic Levi-nonflat hypersurfaces in complex two-space. The classification of holomorphic vector fields obtained in the paper has very interesting overlaps with the recent Lombardi-Stolovitch classification theory for holomorphic vector fields at a singularity. In particular, we show that most of the resonances arising in Lombardi-Stolovitch theory do not occur under the presence of (Levi-nonflat) integral manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信