与罗尔-普法非超曲面相切的全形叶面

Arturo Fernández-Pérez, Rogério Mol, Rudy Rosas
{"title":"与罗尔-普法非超曲面相切的全形叶面","authors":"Arturo Fernández-Pérez, Rogério Mol, Rudy Rosas","doi":"arxiv-2408.03914","DOIUrl":null,"url":null,"abstract":"In this paper we study germs of holomorphic foliations, at the origin of the\ncomplex plane, tangent to Pfaffian hypersurfaces - integral hypersurfaces of\nreal analytic 1-forms - satisfying the Rolle-Khovanskii condition. This\nhypothesis leads us to conclude that such a foliation is defined by a closed\nmeromorphic 1-form, also allowing the classification of the simple models in\nits reduction of singularities.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic foliations tangent to Rolle-pfaffian hypersurfaces\",\"authors\":\"Arturo Fernández-Pérez, Rogério Mol, Rudy Rosas\",\"doi\":\"arxiv-2408.03914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study germs of holomorphic foliations, at the origin of the\\ncomplex plane, tangent to Pfaffian hypersurfaces - integral hypersurfaces of\\nreal analytic 1-forms - satisfying the Rolle-Khovanskii condition. This\\nhypothesis leads us to conclude that such a foliation is defined by a closed\\nmeromorphic 1-form, also allowing the classification of the simple models in\\nits reduction of singularities.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在复平面原点,与满足罗尔-霍凡斯基(Rolle-Khovanskii)条件的普法超曲面--真实解析 1 形的积分超曲面--相切的全形叶状的胚芽。这一假设使我们得出结论,这种叶形是由封闭的meromorphic 1-form定义的,也允许对其奇点还原中的简单模型进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic foliations tangent to Rolle-pfaffian hypersurfaces
In this paper we study germs of holomorphic foliations, at the origin of the complex plane, tangent to Pfaffian hypersurfaces - integral hypersurfaces of real analytic 1-forms - satisfying the Rolle-Khovanskii condition. This hypothesis leads us to conclude that such a foliation is defined by a closed meromorphic 1-form, also allowing the classification of the simple models in its reduction of singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信