{"title":"光滑法诺变体切线束的丰度型结果","authors":"Juanyong Wang","doi":"arxiv-2408.03799","DOIUrl":null,"url":null,"abstract":"In this paper we prove the following abundance-type result: for any smooth\nFano variety $X$, the tangent bundle $T_X$ is nef if and only if it is big and\nsemiample in the sense that the tautological line bundle\n$\\mathscr{O}_{\\mathbb{P}T_X}(1)$ is so, by which we establish a weak form of\nthe Campana-Peternell conjecture (Camapan-Peternell, 1991).","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An abundance-type result for the tangent bundles of smooth Fano varieties\",\"authors\":\"Juanyong Wang\",\"doi\":\"arxiv-2408.03799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the following abundance-type result: for any smooth\\nFano variety $X$, the tangent bundle $T_X$ is nef if and only if it is big and\\nsemiample in the sense that the tautological line bundle\\n$\\\\mathscr{O}_{\\\\mathbb{P}T_X}(1)$ is so, by which we establish a weak form of\\nthe Campana-Peternell conjecture (Camapan-Peternell, 1991).\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An abundance-type result for the tangent bundles of smooth Fano varieties
In this paper we prove the following abundance-type result: for any smooth
Fano variety $X$, the tangent bundle $T_X$ is nef if and only if it is big and
semiample in the sense that the tautological line bundle
$\mathscr{O}_{\mathbb{P}T_X}(1)$ is so, by which we establish a weak form of
the Campana-Peternell conjecture (Camapan-Peternell, 1991).