{"title":"可分代数中双重分配超同性的分类","authors":"Yu. M. Movsisyan, S. S. Davidov","doi":"10.3103/s1068362324700225","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper provides a classification of nontrivial dual hyperidentities of the left and right distributivity satisfied in functionally nontrivial divisible algebras. If the nontrivial dual hyperidentities of the left and right distributivity hold in a functionally nontrivial divisible algebra, then the hyperidentity of the left distributivity is of rank two and is (equivalent to the hyperidentity) of the form</p><span>$$X(x,Y(y,z))=Y(X(x,y),X(x,z)),$$</span><p>while the hyperidentity of the right distributivity is the hyperidentity of rank two and is (equivalent to the hyperidentity) of the form</p><span>$$X(Y(x,y),z)=Y(X(x,z),X(y,z)).$$</span><p>For the classification of nontrivial hyperidentities of the left and right distributivity satisfying in functionally nontrivial <span>\\(q\\)</span>-algebras, see [1–4].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Dual Distributive Hyperidentities in Divisible Algebras\",\"authors\":\"Yu. M. Movsisyan, S. S. Davidov\",\"doi\":\"10.3103/s1068362324700225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper provides a classification of nontrivial dual hyperidentities of the left and right distributivity satisfied in functionally nontrivial divisible algebras. If the nontrivial dual hyperidentities of the left and right distributivity hold in a functionally nontrivial divisible algebra, then the hyperidentity of the left distributivity is of rank two and is (equivalent to the hyperidentity) of the form</p><span>$$X(x,Y(y,z))=Y(X(x,y),X(x,z)),$$</span><p>while the hyperidentity of the right distributivity is the hyperidentity of rank two and is (equivalent to the hyperidentity) of the form</p><span>$$X(Y(x,y),z)=Y(X(x,z),X(y,z)).$$</span><p>For the classification of nontrivial hyperidentities of the left and right distributivity satisfying in functionally nontrivial <span>\\\\(q\\\\)</span>-algebras, see [1–4].</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362324700225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Dual Distributive Hyperidentities in Divisible Algebras
Abstract
The paper provides a classification of nontrivial dual hyperidentities of the left and right distributivity satisfied in functionally nontrivial divisible algebras. If the nontrivial dual hyperidentities of the left and right distributivity hold in a functionally nontrivial divisible algebra, then the hyperidentity of the left distributivity is of rank two and is (equivalent to the hyperidentity) of the form
$$X(x,Y(y,z))=Y(X(x,y),X(x,z)),$$
while the hyperidentity of the right distributivity is the hyperidentity of rank two and is (equivalent to the hyperidentity) of the form
$$X(Y(x,y),z)=Y(X(x,z),X(y,z)).$$
For the classification of nontrivial hyperidentities of the left and right distributivity satisfying in functionally nontrivial \(q\)-algebras, see [1–4].