非正交立方体表面上的 $ell$-away ACM 线束

Debojyoti Bhattacharya, A. J. Parameswaran, Jagadish Pine
{"title":"非正交立方体表面上的 $ell$-away ACM 线束","authors":"Debojyoti Bhattacharya, A. J. Parameswaran, Jagadish Pine","doi":"arxiv-2408.04464","DOIUrl":null,"url":null,"abstract":"Let $X \\subset \\mathbb P^3$ be a nonsingular cubic hypersurface. Faenzi\n(\\cite{F}) and later Pons-Llopis and Tonini (\\cite{PLT}) have completely\ncharacterized ACM line bundles over $X$. As a natural continuation of their\nstudy in the non-ACM direction, in this paper, we completely classify\n$\\ell$-away ACM line bundles (introduced recently by Gawron and Genc\n(\\cite{GG})) over $X$, when $\\ell \\leq 2$. For $\\ell\\geq 3$, we give examples\nof $\\ell$-away ACM line bundles on $X$ and for each $\\ell \\geq 1$, we establish\nthe existence of smooth hypersurfaces $X^{(d)}$ of degree $d >\\ell$ in $\\mathbb\nP^3$ admitting $\\ell$-away ACM line bundles.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\ell$-away ACM line bundles on a nonsingular cubic surface\",\"authors\":\"Debojyoti Bhattacharya, A. J. Parameswaran, Jagadish Pine\",\"doi\":\"arxiv-2408.04464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X \\\\subset \\\\mathbb P^3$ be a nonsingular cubic hypersurface. Faenzi\\n(\\\\cite{F}) and later Pons-Llopis and Tonini (\\\\cite{PLT}) have completely\\ncharacterized ACM line bundles over $X$. As a natural continuation of their\\nstudy in the non-ACM direction, in this paper, we completely classify\\n$\\\\ell$-away ACM line bundles (introduced recently by Gawron and Genc\\n(\\\\cite{GG})) over $X$, when $\\\\ell \\\\leq 2$. For $\\\\ell\\\\geq 3$, we give examples\\nof $\\\\ell$-away ACM line bundles on $X$ and for each $\\\\ell \\\\geq 1$, we establish\\nthe existence of smooth hypersurfaces $X^{(d)}$ of degree $d >\\\\ell$ in $\\\\mathbb\\nP^3$ admitting $\\\\ell$-away ACM line bundles.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $X \subset \mathbb P^3$ 是一个非奇异立方超曲面。Faenzi (\cite{F}) 以及后来的 Pons-Llopis 和 Tonini (\cite{PLT}) 对 $X$ 上的 ACM 线束进行了完全描述。作为他们的研究在非ACM方向上的自然延续,在本文中,当$ell \leq 2$时,我们对$X$上的$ell \leq ACM线束(最近由Gawron和Genc(\cite{GG})引入)进行了完全分类。对于 $ell\geq 3$,我们给出了在 $X$ 上的 $ell$-away ACM 线束的例子,并且对于每个 $ell\geq 1$,我们证明了在 $mathbbP^3$ 中存在度数为 $d >\ell$ 的光滑超曲面 $X^{(d)}$,它允许 $ell$-away ACM 线束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\ell$-away ACM line bundles on a nonsingular cubic surface
Let $X \subset \mathbb P^3$ be a nonsingular cubic hypersurface. Faenzi (\cite{F}) and later Pons-Llopis and Tonini (\cite{PLT}) have completely characterized ACM line bundles over $X$. As a natural continuation of their study in the non-ACM direction, in this paper, we completely classify $\ell$-away ACM line bundles (introduced recently by Gawron and Genc (\cite{GG})) over $X$, when $\ell \leq 2$. For $\ell\geq 3$, we give examples of $\ell$-away ACM line bundles on $X$ and for each $\ell \geq 1$, we establish the existence of smooth hypersurfaces $X^{(d)}$ of degree $d >\ell$ in $\mathbb P^3$ admitting $\ell$-away ACM line bundles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信