Debojyoti Bhattacharya, A. J. Parameswaran, Jagadish Pine
{"title":"非正交立方体表面上的 $ell$-away ACM 线束","authors":"Debojyoti Bhattacharya, A. J. Parameswaran, Jagadish Pine","doi":"arxiv-2408.04464","DOIUrl":null,"url":null,"abstract":"Let $X \\subset \\mathbb P^3$ be a nonsingular cubic hypersurface. Faenzi\n(\\cite{F}) and later Pons-Llopis and Tonini (\\cite{PLT}) have completely\ncharacterized ACM line bundles over $X$. As a natural continuation of their\nstudy in the non-ACM direction, in this paper, we completely classify\n$\\ell$-away ACM line bundles (introduced recently by Gawron and Genc\n(\\cite{GG})) over $X$, when $\\ell \\leq 2$. For $\\ell\\geq 3$, we give examples\nof $\\ell$-away ACM line bundles on $X$ and for each $\\ell \\geq 1$, we establish\nthe existence of smooth hypersurfaces $X^{(d)}$ of degree $d >\\ell$ in $\\mathbb\nP^3$ admitting $\\ell$-away ACM line bundles.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\ell$-away ACM line bundles on a nonsingular cubic surface\",\"authors\":\"Debojyoti Bhattacharya, A. J. Parameswaran, Jagadish Pine\",\"doi\":\"arxiv-2408.04464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X \\\\subset \\\\mathbb P^3$ be a nonsingular cubic hypersurface. Faenzi\\n(\\\\cite{F}) and later Pons-Llopis and Tonini (\\\\cite{PLT}) have completely\\ncharacterized ACM line bundles over $X$. As a natural continuation of their\\nstudy in the non-ACM direction, in this paper, we completely classify\\n$\\\\ell$-away ACM line bundles (introduced recently by Gawron and Genc\\n(\\\\cite{GG})) over $X$, when $\\\\ell \\\\leq 2$. For $\\\\ell\\\\geq 3$, we give examples\\nof $\\\\ell$-away ACM line bundles on $X$ and for each $\\\\ell \\\\geq 1$, we establish\\nthe existence of smooth hypersurfaces $X^{(d)}$ of degree $d >\\\\ell$ in $\\\\mathbb\\nP^3$ admitting $\\\\ell$-away ACM line bundles.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
$\ell$-away ACM line bundles on a nonsingular cubic surface
Let $X \subset \mathbb P^3$ be a nonsingular cubic hypersurface. Faenzi
(\cite{F}) and later Pons-Llopis and Tonini (\cite{PLT}) have completely
characterized ACM line bundles over $X$. As a natural continuation of their
study in the non-ACM direction, in this paper, we completely classify
$\ell$-away ACM line bundles (introduced recently by Gawron and Genc
(\cite{GG})) over $X$, when $\ell \leq 2$. For $\ell\geq 3$, we give examples
of $\ell$-away ACM line bundles on $X$ and for each $\ell \geq 1$, we establish
the existence of smooth hypersurfaces $X^{(d)}$ of degree $d >\ell$ in $\mathbb
P^3$ admitting $\ell$-away ACM line bundles.