{"title":"浊珊瑚群落抵御海洋热浪的能力","authors":"Adi Zweifler, Shannon Dee, Nicola K. Browne","doi":"10.1007/s00338-024-02538-0","DOIUrl":null,"url":null,"abstract":"<p>High sea surface temperatures recorded in summer 2021 introduced a unique opportunity for ‘real-time’ assessment of Exmouth Gulf turbid reef’s resilience to a marine heatwave event. Four sites along a turbidity and temperature gradient were surveyed during (March 2021) and after (October 2021) the event to assess bleaching rates (Bleaching Index = BI), differences in coral morphological responses to the heat wave, and post-event changes in benthic and coral community structure. Despite experiencing higher temperatures (> 30 °C) and Degree Heating Weeks (DHW = 8), the most turbid reef site, Somerville, displayed greater resilience to heat stress (BI = 14) compared to the “clear water” site, Bundegi (BI = 19.3), where temperatures never exceeded 30 °C (3 DHW). Our results also reveal that encrusting and massive corals, often considered more resilient to bleaching, displayed increased bleaching susceptibility at the turbid sites, potentially due to the synergistic effects of sedimentation and heat stress. In contrast, branching and foliose corals showed greater resilience to the heat wave in turbid water settings, while encrusting and branching corals exhibited lower resilience in the clearwater site. These findings highlight complex interactions between heat and reduced UV stress on turbid reefs potentially increasing resilience to bleaching but likely only for those coral morphologies that are not heavily impacted by sedimentation.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"124 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience of turbid coral communities to marine heatwave\",\"authors\":\"Adi Zweifler, Shannon Dee, Nicola K. Browne\",\"doi\":\"10.1007/s00338-024-02538-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High sea surface temperatures recorded in summer 2021 introduced a unique opportunity for ‘real-time’ assessment of Exmouth Gulf turbid reef’s resilience to a marine heatwave event. Four sites along a turbidity and temperature gradient were surveyed during (March 2021) and after (October 2021) the event to assess bleaching rates (Bleaching Index = BI), differences in coral morphological responses to the heat wave, and post-event changes in benthic and coral community structure. Despite experiencing higher temperatures (> 30 °C) and Degree Heating Weeks (DHW = 8), the most turbid reef site, Somerville, displayed greater resilience to heat stress (BI = 14) compared to the “clear water” site, Bundegi (BI = 19.3), where temperatures never exceeded 30 °C (3 DHW). Our results also reveal that encrusting and massive corals, often considered more resilient to bleaching, displayed increased bleaching susceptibility at the turbid sites, potentially due to the synergistic effects of sedimentation and heat stress. In contrast, branching and foliose corals showed greater resilience to the heat wave in turbid water settings, while encrusting and branching corals exhibited lower resilience in the clearwater site. These findings highlight complex interactions between heat and reduced UV stress on turbid reefs potentially increasing resilience to bleaching but likely only for those coral morphologies that are not heavily impacted by sedimentation.</p>\",\"PeriodicalId\":10821,\"journal\":{\"name\":\"Coral Reefs\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coral Reefs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02538-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02538-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Resilience of turbid coral communities to marine heatwave
High sea surface temperatures recorded in summer 2021 introduced a unique opportunity for ‘real-time’ assessment of Exmouth Gulf turbid reef’s resilience to a marine heatwave event. Four sites along a turbidity and temperature gradient were surveyed during (March 2021) and after (October 2021) the event to assess bleaching rates (Bleaching Index = BI), differences in coral morphological responses to the heat wave, and post-event changes in benthic and coral community structure. Despite experiencing higher temperatures (> 30 °C) and Degree Heating Weeks (DHW = 8), the most turbid reef site, Somerville, displayed greater resilience to heat stress (BI = 14) compared to the “clear water” site, Bundegi (BI = 19.3), where temperatures never exceeded 30 °C (3 DHW). Our results also reveal that encrusting and massive corals, often considered more resilient to bleaching, displayed increased bleaching susceptibility at the turbid sites, potentially due to the synergistic effects of sedimentation and heat stress. In contrast, branching and foliose corals showed greater resilience to the heat wave in turbid water settings, while encrusting and branching corals exhibited lower resilience in the clearwater site. These findings highlight complex interactions between heat and reduced UV stress on turbid reefs potentially increasing resilience to bleaching but likely only for those coral morphologies that are not heavily impacted by sedimentation.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.