John T. Morris, Brittany Huntington, Courtney Couch, Shannon Ruseborn
{"title":"美国夏威夷船只搁浅后被动和主动恢复方法的长期结果","authors":"John T. Morris, Brittany Huntington, Courtney Couch, Shannon Ruseborn","doi":"10.1007/s00338-024-02529-1","DOIUrl":null,"url":null,"abstract":"<p>In February 2010, the cargo vessel <i>M/V Vogetrader</i> ran aground on a forereef in Oahu, Hawaii. Baseline surveys documented considerable damage to coral communities. Several restoration actions were implemented in 2013, including active restoration (rubble removal, coral outplanting) and passive restoration (natural recovery), with the goal of returning corals to their pre-disturbance state. In 2022, repeated surveys were conducted across three injury zones that varied in the severity of impact and the restoration actions employed to provide a rare assessment of restoration outcomes a decade post-grounding. We found coral recovery to be contingent on the severity of impact and the quality of the impacted habitat, not the amount of active restoration. Despite rubble removal efforts, present-day rubble cover was significantly higher at the impact sites compared to the reference sites and appeared to constrain recovery in the injury zone where grounding impacts destabilized the reef framework. Outplant efforts did not increase coral density or mean size relative to natural recovery sites, though this may be the result of an ineffective outplant design rather than failed outplanting as a whole. The sites closest to returning to a pre-disturbance state were the passive restoration sites. This, however, likely reflects the low severity of grounding impacts and the marginal (e.g., small and sparse) population of corals at these sites. These findings suggest that the extent of active restoration actions should be carefully and intentionally scaled to the severity and spatial extent of impact (with greater impacted areas receiving greater amounts of restoration), and that with sufficient time, marginal reef habitats with a low impact severity can likely recover from passive restoration alone.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term outcomes of passive and active restoration approaches following a vessel grounding in Hawaii, USA\",\"authors\":\"John T. Morris, Brittany Huntington, Courtney Couch, Shannon Ruseborn\",\"doi\":\"10.1007/s00338-024-02529-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In February 2010, the cargo vessel <i>M/V Vogetrader</i> ran aground on a forereef in Oahu, Hawaii. Baseline surveys documented considerable damage to coral communities. Several restoration actions were implemented in 2013, including active restoration (rubble removal, coral outplanting) and passive restoration (natural recovery), with the goal of returning corals to their pre-disturbance state. In 2022, repeated surveys were conducted across three injury zones that varied in the severity of impact and the restoration actions employed to provide a rare assessment of restoration outcomes a decade post-grounding. We found coral recovery to be contingent on the severity of impact and the quality of the impacted habitat, not the amount of active restoration. Despite rubble removal efforts, present-day rubble cover was significantly higher at the impact sites compared to the reference sites and appeared to constrain recovery in the injury zone where grounding impacts destabilized the reef framework. Outplant efforts did not increase coral density or mean size relative to natural recovery sites, though this may be the result of an ineffective outplant design rather than failed outplanting as a whole. The sites closest to returning to a pre-disturbance state were the passive restoration sites. This, however, likely reflects the low severity of grounding impacts and the marginal (e.g., small and sparse) population of corals at these sites. These findings suggest that the extent of active restoration actions should be carefully and intentionally scaled to the severity and spatial extent of impact (with greater impacted areas receiving greater amounts of restoration), and that with sufficient time, marginal reef habitats with a low impact severity can likely recover from passive restoration alone.</p>\",\"PeriodicalId\":10821,\"journal\":{\"name\":\"Coral Reefs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coral Reefs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02529-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02529-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Long-term outcomes of passive and active restoration approaches following a vessel grounding in Hawaii, USA
In February 2010, the cargo vessel M/V Vogetrader ran aground on a forereef in Oahu, Hawaii. Baseline surveys documented considerable damage to coral communities. Several restoration actions were implemented in 2013, including active restoration (rubble removal, coral outplanting) and passive restoration (natural recovery), with the goal of returning corals to their pre-disturbance state. In 2022, repeated surveys were conducted across three injury zones that varied in the severity of impact and the restoration actions employed to provide a rare assessment of restoration outcomes a decade post-grounding. We found coral recovery to be contingent on the severity of impact and the quality of the impacted habitat, not the amount of active restoration. Despite rubble removal efforts, present-day rubble cover was significantly higher at the impact sites compared to the reference sites and appeared to constrain recovery in the injury zone where grounding impacts destabilized the reef framework. Outplant efforts did not increase coral density or mean size relative to natural recovery sites, though this may be the result of an ineffective outplant design rather than failed outplanting as a whole. The sites closest to returning to a pre-disturbance state were the passive restoration sites. This, however, likely reflects the low severity of grounding impacts and the marginal (e.g., small and sparse) population of corals at these sites. These findings suggest that the extent of active restoration actions should be carefully and intentionally scaled to the severity and spatial extent of impact (with greater impacted areas receiving greater amounts of restoration), and that with sufficient time, marginal reef habitats with a low impact severity can likely recover from passive restoration alone.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.