{"title":"具有外伽罗瓦点的四曲面和具有 4 阶自形性的 K3 曲面","authors":"Kei Miura, Shingo Taki","doi":"arxiv-2408.04137","DOIUrl":null,"url":null,"abstract":"We prove that there exists a one-to-one correspondence between smooth quartic\nsurfaces with an outer Galois point and K3 surfaces with a certain automorphism\nof order 4. Furthermore, we characterize quartic surfaces with two or more\nouter Galois points as K3 surfaces.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quartic surfaces with an outer Galois point and K3 surfaces with an automorphism of order 4\",\"authors\":\"Kei Miura, Shingo Taki\",\"doi\":\"arxiv-2408.04137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that there exists a one-to-one correspondence between smooth quartic\\nsurfaces with an outer Galois point and K3 surfaces with a certain automorphism\\nof order 4. Furthermore, we characterize quartic surfaces with two or more\\nouter Galois points as K3 surfaces.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quartic surfaces with an outer Galois point and K3 surfaces with an automorphism of order 4
We prove that there exists a one-to-one correspondence between smooth quartic
surfaces with an outer Galois point and K3 surfaces with a certain automorphism
of order 4. Furthermore, we characterize quartic surfaces with two or more
outer Galois points as K3 surfaces.