Fed-RD:用于金融犯罪检测的隐私保护联合学习

Md. Saikat Islam Khan, Aparna Gupta, Oshani Seneviratne, Stacy Patterson
{"title":"Fed-RD:用于金融犯罪检测的隐私保护联合学习","authors":"Md. Saikat Islam Khan, Aparna Gupta, Oshani Seneviratne, Stacy Patterson","doi":"arxiv-2408.01609","DOIUrl":null,"url":null,"abstract":"We introduce Federated Learning for Relational Data (Fed-RD), a novel\nprivacy-preserving federated learning algorithm specifically developed for\nfinancial transaction datasets partitioned vertically and horizontally across\nparties. Fed-RD strategically employs differential privacy and secure\nmultiparty computation to guarantee the privacy of training data. We provide\ntheoretical analysis of the end-to-end privacy of the training algorithm and\npresent experimental results on realistic synthetic datasets. Our results\ndemonstrate that Fed-RD achieves high model accuracy with minimal degradation\nas privacy increases, while consistently surpassing benchmark results.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fed-RD: Privacy-Preserving Federated Learning for Financial Crime Detection\",\"authors\":\"Md. Saikat Islam Khan, Aparna Gupta, Oshani Seneviratne, Stacy Patterson\",\"doi\":\"arxiv-2408.01609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Federated Learning for Relational Data (Fed-RD), a novel\\nprivacy-preserving federated learning algorithm specifically developed for\\nfinancial transaction datasets partitioned vertically and horizontally across\\nparties. Fed-RD strategically employs differential privacy and secure\\nmultiparty computation to guarantee the privacy of training data. We provide\\ntheoretical analysis of the end-to-end privacy of the training algorithm and\\npresent experimental results on realistic synthetic datasets. Our results\\ndemonstrate that Fed-RD achieves high model accuracy with minimal degradation\\nas privacy increases, while consistently surpassing benchmark results.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了关系数据联合学习(Fed-RD),这是一种新颖的隐私保护联合学习算法,专门针对跨方纵向和横向分割的金融交易数据集而开发。Fed-RD 战略性地采用了差分隐私和安全多方计算来保证训练数据的隐私性。我们对训练算法的端到端隐私进行了理论分析,并展示了在现实合成数据集上的实验结果。我们的结果表明,Fed-RD 能够实现较高的模型准确性,而且随着隐私程度的提高,模型准确性的下降幅度也很小,同时还能不断超越基准结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fed-RD: Privacy-Preserving Federated Learning for Financial Crime Detection
We introduce Federated Learning for Relational Data (Fed-RD), a novel privacy-preserving federated learning algorithm specifically developed for financial transaction datasets partitioned vertically and horizontally across parties. Fed-RD strategically employs differential privacy and secure multiparty computation to guarantee the privacy of training data. We provide theoretical analysis of the end-to-end privacy of the training algorithm and present experimental results on realistic synthetic datasets. Our results demonstrate that Fed-RD achieves high model accuracy with minimal degradation as privacy increases, while consistently surpassing benchmark results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信