L3iTC 参加 FinLLM 挑战任务:金融文本分类和摘要的量化

Elvys Linhares Pontes, Carlos-Emiliano González-Gallardo, Mohamed Benjannet, Caryn Qu, Antoine Doucet
{"title":"L3iTC 参加 FinLLM 挑战任务:金融文本分类和摘要的量化","authors":"Elvys Linhares Pontes, Carlos-Emiliano González-Gallardo, Mohamed Benjannet, Caryn Qu, Antoine Doucet","doi":"arxiv-2408.03033","DOIUrl":null,"url":null,"abstract":"This article details our participation (L3iTC) in the FinLLM Challenge Task\n2024, focusing on two key areas: Task 1, financial text classification, and\nTask 2, financial text summarization. To address these challenges, we\nfine-tuned several large language models (LLMs) to optimize performance for\neach task. Specifically, we used 4-bit quantization and LoRA to determine which\nlayers of the LLMs should be trained at a lower precision. This approach not\nonly accelerated the fine-tuning process on the training data provided by the\norganizers but also enabled us to run the models on low GPU memory. Our\nfine-tuned models achieved third place for the financial classification task\nwith an F1-score of 0.7543 and secured sixth place in the financial\nsummarization task on the official test datasets.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L3iTC at the FinLLM Challenge Task: Quantization for Financial Text Classification & Summarization\",\"authors\":\"Elvys Linhares Pontes, Carlos-Emiliano González-Gallardo, Mohamed Benjannet, Caryn Qu, Antoine Doucet\",\"doi\":\"arxiv-2408.03033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article details our participation (L3iTC) in the FinLLM Challenge Task\\n2024, focusing on two key areas: Task 1, financial text classification, and\\nTask 2, financial text summarization. To address these challenges, we\\nfine-tuned several large language models (LLMs) to optimize performance for\\neach task. Specifically, we used 4-bit quantization and LoRA to determine which\\nlayers of the LLMs should be trained at a lower precision. This approach not\\nonly accelerated the fine-tuning process on the training data provided by the\\norganizers but also enabled us to run the models on low GPU memory. Our\\nfine-tuned models achieved third place for the financial classification task\\nwith an F1-score of 0.7543 and secured sixth place in the financial\\nsummarization task on the official test datasets.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文详细介绍了我们(L3iTC)参与 FinLLM Challenge Task2024 的情况,重点关注两个关键领域:任务 1:金融文本分类;任务 2:金融文本摘要。为了应对这些挑战,我们对多个大型语言模型(LLM)进行了微调,以优化每个任务的性能。具体来说,我们使用 4 位量化和 LoRA 来确定 LLM 的哪些层应该以较低的精度进行训练。这种方法不仅加快了对组织者提供的训练数据进行微调的过程,还使我们能够在较低的 GPU 内存上运行模型。我们微调后的模型在金融分类任务中取得了第三名的好成绩,F1 分数为 0.7543,并在官方测试数据集的金融摘要任务中取得了第六名的好成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L3iTC at the FinLLM Challenge Task: Quantization for Financial Text Classification & Summarization
This article details our participation (L3iTC) in the FinLLM Challenge Task 2024, focusing on two key areas: Task 1, financial text classification, and Task 2, financial text summarization. To address these challenges, we fine-tuned several large language models (LLMs) to optimize performance for each task. Specifically, we used 4-bit quantization and LoRA to determine which layers of the LLMs should be trained at a lower precision. This approach not only accelerated the fine-tuning process on the training data provided by the organizers but also enabled us to run the models on low GPU memory. Our fine-tuned models achieved third place for the financial classification task with an F1-score of 0.7543 and secured sixth place in the financial summarization task on the official test datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信