零压力梯度下湍流边界层平均流向速度幂律的近似推导

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
J. Dey
{"title":"零压力梯度下湍流边界层平均流向速度幂律的近似推导","authors":"J. Dey","doi":"10.1103/physrevfluids.9.084601","DOIUrl":null,"url":null,"abstract":"Distribution of the mean streamwise velocity in a turbulent boundary layer over a flat plate can be represented by the equation <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>U</mi><mo>∼</mo><msup><mi>η</mi><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math>, as was widely used in the past; <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>η</mi></math> are the normalized velocity and the wall-normal distance, respectively. However, this <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow><mi mathvariant=\"normal\">th</mi></math>-power law is an empirical one. By incorporating either the Reynolds shear stress model of Wei <i>et al.</i> [<span>J. Fluid Mech.</span> <b>969</b>, A3 (2023)], which is in terms of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> and the (normalized) wall-normal velocity (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math>), or a similar one in the boundary layer equations, it is found that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> are related as <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mi>U</mi><mrow><mo>(</mo><mi>H</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>∼</mo><mspace width=\"4pt\"></mspace><msup><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></math> in the outer region of a flat plate boundary layer; <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>H</mi></mrow></math> is the flow shape parameter. Along with the distribution of the wall-normal velocity (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mi>w</mi></msub></math>) of Wei <i>et al.</i>, the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow><mi mathvariant=\"normal\">th</mi></math>-power law for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> is obtained by equating the derivative (with respect to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>η</mi></math>) of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> with that of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>V</mi><mi>w</mi></msub></math>. Thus, this empirical power law seems to have a reasonable theoretical basis embedded in it.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate derivation of the power law for the mean streamwise velocity in a turbulent boundary layer under zero-pressure gradient\",\"authors\":\"J. Dey\",\"doi\":\"10.1103/physrevfluids.9.084601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distribution of the mean streamwise velocity in a turbulent boundary layer over a flat plate can be represented by the equation <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>U</mi><mo>∼</mo><msup><mi>η</mi><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow></msup></mrow></math>, as was widely used in the past; <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>η</mi></math> are the normalized velocity and the wall-normal distance, respectively. However, this <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow><mi mathvariant=\\\"normal\\\">th</mi></math>-power law is an empirical one. By incorporating either the Reynolds shear stress model of Wei <i>et al.</i> [<span>J. Fluid Mech.</span> <b>969</b>, A3 (2023)], which is in terms of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi></math> and the (normalized) wall-normal velocity (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>V</mi></math>), or a similar one in the boundary layer equations, it is found that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>V</mi></math> are related as <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msup><mi>U</mi><mrow><mo>(</mo><mi>H</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>∼</mo><mspace width=\\\"4pt\\\"></mspace><msup><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></math> in the outer region of a flat plate boundary layer; <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>H</mi></mrow></math> is the flow shape parameter. Along with the distribution of the wall-normal velocity (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>V</mi><mi>w</mi></msub></math>) of Wei <i>et al.</i>, the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mo>/</mo><mi>n</mi></mrow><mi mathvariant=\\\"normal\\\">th</mi></math>-power law for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi></math> is obtained by equating the derivative (with respect to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>η</mi></math>) of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>V</mi></math> with that of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>V</mi><mi>w</mi></msub></math>. Thus, this empirical power law seems to have a reasonable theoretical basis embedded in it.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.084601\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

平板上湍流边界层的平均流向速度分布可用方程 U∼η1/n 表示,这在过去被广泛使用;U 和 η 分别是归一化速度和壁面法线距离。然而,这个 1/n 次幂定律是一个经验定律。通过将 Wei 等人的雷诺剪应力模型[J. Fluid Mech. 969, A3 (2023)](以 U 和(归一化)壁面法向速度 (V) 表示)或类似的模型纳入边界层方程,可以发现在平板边界层的外部区域,U 和 V 的关系为 U(H+1)∼V(H-1);H 是流动形状参数。根据 Wei 等人的壁面法向速度(Vw)分布,将 V 的导数(相对于 η)等同于 Vw 的导数,即可得到 U 的 1/n 次幂律。因此,这一经验幂律似乎具有合理的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximate derivation of the power law for the mean streamwise velocity in a turbulent boundary layer under zero-pressure gradient

Approximate derivation of the power law for the mean streamwise velocity in a turbulent boundary layer under zero-pressure gradient
Distribution of the mean streamwise velocity in a turbulent boundary layer over a flat plate can be represented by the equation Uη1/n, as was widely used in the past; U and η are the normalized velocity and the wall-normal distance, respectively. However, this 1/nth-power law is an empirical one. By incorporating either the Reynolds shear stress model of Wei et al. [J. Fluid Mech. 969, A3 (2023)], which is in terms of U and the (normalized) wall-normal velocity (V), or a similar one in the boundary layer equations, it is found that U and V are related as U(H+1)V(H1) in the outer region of a flat plate boundary layer; H is the flow shape parameter. Along with the distribution of the wall-normal velocity (Vw) of Wei et al., the 1/nth-power law for U is obtained by equating the derivative (with respect to η) of V with that of Vw. Thus, this empirical power law seems to have a reasonable theoretical basis embedded in it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信