b-ary 扩展中带有移位的共同子串

IF 0.5 4区 数学 Q3 MATHEMATICS
Xin Liao, Dingding Yu
{"title":"b-ary 扩展中带有移位的共同子串","authors":"Xin Liao,&nbsp;Dingding Yu","doi":"10.1007/s00013-024-02038-1","DOIUrl":null,"url":null,"abstract":"<div><p>Denote by <span>\\(S_n(x,y)\\)</span> the length of the longest common substring of <i>x</i> and <i>y</i> with shifts in their first <i>n</i> digits of the <i>b</i>-ary expansions. We show that the sets of pairs (<i>x</i>, <i>y</i>), for which the growth rate of <span>\\(S_n(x,y)\\)</span> is <span>\\(\\alpha \\log n\\)</span> with <span>\\(0\\le \\alpha \\le \\infty \\)</span>, have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 4","pages":"369 - 377"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common substring with shifts in b-ary expansions\",\"authors\":\"Xin Liao,&nbsp;Dingding Yu\",\"doi\":\"10.1007/s00013-024-02038-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Denote by <span>\\\\(S_n(x,y)\\\\)</span> the length of the longest common substring of <i>x</i> and <i>y</i> with shifts in their first <i>n</i> digits of the <i>b</i>-ary expansions. We show that the sets of pairs (<i>x</i>, <i>y</i>), for which the growth rate of <span>\\\\(S_n(x,y)\\\\)</span> is <span>\\\\(\\\\alpha \\\\log n\\\\)</span> with <span>\\\\(0\\\\le \\\\alpha \\\\le \\\\infty \\\\)</span>, have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 4\",\"pages\":\"369 - 377\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02038-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02038-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用 \(S_n(x,y)\)表示 x 和 y 的最长公共子串的长度,它们的 b-ary 展开的前 n 位有移位。我们证明,对于\(S_n(x,y)\)的增长率为\(\alpha \log n\) with \(0 \le \alpha \le \infty \)的成对集合(x, y),具有全豪斯多夫维。我们的方法依赖于对矩阵谱半径的一些估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common substring with shifts in b-ary expansions

Denote by \(S_n(x,y)\) the length of the longest common substring of x and y with shifts in their first n digits of the b-ary expansions. We show that the sets of pairs (xy), for which the growth rate of \(S_n(x,y)\) is \(\alpha \log n\) with \(0\le \alpha \le \infty \), have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信