{"title":"b-ary 扩展中带有移位的共同子串","authors":"Xin Liao, Dingding Yu","doi":"10.1007/s00013-024-02038-1","DOIUrl":null,"url":null,"abstract":"<div><p>Denote by <span>\\(S_n(x,y)\\)</span> the length of the longest common substring of <i>x</i> and <i>y</i> with shifts in their first <i>n</i> digits of the <i>b</i>-ary expansions. We show that the sets of pairs (<i>x</i>, <i>y</i>), for which the growth rate of <span>\\(S_n(x,y)\\)</span> is <span>\\(\\alpha \\log n\\)</span> with <span>\\(0\\le \\alpha \\le \\infty \\)</span>, have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common substring with shifts in b-ary expansions\",\"authors\":\"Xin Liao, Dingding Yu\",\"doi\":\"10.1007/s00013-024-02038-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Denote by <span>\\\\(S_n(x,y)\\\\)</span> the length of the longest common substring of <i>x</i> and <i>y</i> with shifts in their first <i>n</i> digits of the <i>b</i>-ary expansions. We show that the sets of pairs (<i>x</i>, <i>y</i>), for which the growth rate of <span>\\\\(S_n(x,y)\\\\)</span> is <span>\\\\(\\\\alpha \\\\log n\\\\)</span> with <span>\\\\(0\\\\le \\\\alpha \\\\le \\\\infty \\\\)</span>, have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02038-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02038-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
用 \(S_n(x,y)\)表示 x 和 y 的最长公共子串的长度,它们的 b-ary 展开的前 n 位有移位。我们证明,对于\(S_n(x,y)\)的增长率为\(\alpha \log n\) with \(0 \le \alpha \le \infty \)的成对集合(x, y),具有全豪斯多夫维。我们的方法依赖于对矩阵谱半径的一些估计。
Denote by \(S_n(x,y)\) the length of the longest common substring of x and y with shifts in their first n digits of the b-ary expansions. We show that the sets of pairs (x, y), for which the growth rate of \(S_n(x,y)\) is \(\alpha \log n\) with \(0\le \alpha \le \infty \), have full Hausdorff dimension. Our method relies upon some estimation of the spectral radius of matrices.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.