{"title":"旋转对称梯度山叶孤子","authors":"Antonio W. Cunha, Rong Mi","doi":"10.1007/s00013-024-02032-7","DOIUrl":null,"url":null,"abstract":"<div><p>This short note deals with compact and complete and non-compact gradient Yamabe solitons (<i>M</i>, <i>g</i>, <i>f</i>) such that it has metric of constant scalar curvature. Firstly, we give a new proof of triviality for gradient compact Yamabe solitons. Also, under some integral conditions, we are able to improve a result due to Ma and Miquel (Ann Global Anal Geom 42:195–205, 2012). Finally, we obtain that the Yamabe metric becomes rotationally symmetric. Results for <i>k</i>-Yamabe solitons are also obtained here.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotationally symmetric gradient Yamabe solitons\",\"authors\":\"Antonio W. Cunha, Rong Mi\",\"doi\":\"10.1007/s00013-024-02032-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This short note deals with compact and complete and non-compact gradient Yamabe solitons (<i>M</i>, <i>g</i>, <i>f</i>) such that it has metric of constant scalar curvature. Firstly, we give a new proof of triviality for gradient compact Yamabe solitons. Also, under some integral conditions, we are able to improve a result due to Ma and Miquel (Ann Global Anal Geom 42:195–205, 2012). Finally, we obtain that the Yamabe metric becomes rotationally symmetric. Results for <i>k</i>-Yamabe solitons are also obtained here.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02032-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02032-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
这篇短文论述了具有恒定标量曲率度量的紧凑、完整和非紧凑梯度山边孤子(M, g, f)。首先,我们给出了梯度紧凑山边孤子的新的三性证明。此外,在一些积分条件下,我们还能改进 Ma 和 Miquel 的一个结果(Ann Global Anal Geom 42:195-205, 2012)。最后,我们得到山边公设变得旋转对称了。这里还得到了 k-Yamabe 孤子的结果。
This short note deals with compact and complete and non-compact gradient Yamabe solitons (M, g, f) such that it has metric of constant scalar curvature. Firstly, we give a new proof of triviality for gradient compact Yamabe solitons. Also, under some integral conditions, we are able to improve a result due to Ma and Miquel (Ann Global Anal Geom 42:195–205, 2012). Finally, we obtain that the Yamabe metric becomes rotationally symmetric. Results for k-Yamabe solitons are also obtained here.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.