关于平行平均曲率曲面和科达齐算子的说明

IF 0.5 4区 数学 Q3 MATHEMATICS
Felippe Guimarães
{"title":"关于平行平均曲率曲面和科达齐算子的说明","authors":"Felippe Guimarães","doi":"10.1007/s00013-024-02043-4","DOIUrl":null,"url":null,"abstract":"<div><p>We use an intrinsic Klotz–Osserman type result for surfaces in terms of Codazzi operators to study surfaces with parallel mean curvature and non-positive Gaussian curvature in product spaces.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on parallel mean curvature surfaces and Codazzi operators\",\"authors\":\"Felippe Guimarães\",\"doi\":\"10.1007/s00013-024-02043-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use an intrinsic Klotz–Osserman type result for surfaces in terms of Codazzi operators to study surfaces with parallel mean curvature and non-positive Gaussian curvature in product spaces.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02043-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02043-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用科达齐算子对曲面的内在克洛茨-奥斯曼类型结果,来研究乘积空间中具有平行平均曲率和非正高斯曲率的曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on parallel mean curvature surfaces and Codazzi operators

We use an intrinsic Klotz–Osserman type result for surfaces in terms of Codazzi operators to study surfaces with parallel mean curvature and non-positive Gaussian curvature in product spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信