周期系统的精确 QM/MM 分子动力学(\textsc{GPU4PySCF})及其在酶催化中的应用

Chenghan Li, Garnet Kin-Lic Chan
{"title":"周期系统的精确 QM/MM 分子动力学(\\textsc{GPU4PySCF})及其在酶催化中的应用","authors":"Chenghan Li, Garnet Kin-Lic Chan","doi":"arxiv-2408.03273","DOIUrl":null,"url":null,"abstract":"We present an implementation of the quantum mechanics/molecular mechanics\n(QM/MM) method for periodic systems using GPU accelerated QM methods, a\ndistributed multipole formulation of the electrostatics, and a pseudo-bond\ntreatment of the QM/MM boundary. We demonstrate that our method has\nwell-controlled errors, stable self-consistent QM convergence, and\nenergy-conserving dynamics. We further describe an application to the catalytic\nkinetics of chorismate mutase. Using an accurate hybrid functional\nreparametrized to coupled cluster energetics, our QM/MM simulations highlight\nthe sensitivity in the calculated rate to the choice of quantum method, quantum\nregion selection, and local protein conformation. Our work is provided through\nthe open-source \\textsc{PySCF} package using acceleration from the\n\\textsc{GPU4PySCF} module.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate QM/MM Molecular Dynamics for Periodic Systems in \\\\textsc{GPU4PySCF} with Applications to Enzyme Catalysis\",\"authors\":\"Chenghan Li, Garnet Kin-Lic Chan\",\"doi\":\"arxiv-2408.03273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an implementation of the quantum mechanics/molecular mechanics\\n(QM/MM) method for periodic systems using GPU accelerated QM methods, a\\ndistributed multipole formulation of the electrostatics, and a pseudo-bond\\ntreatment of the QM/MM boundary. We demonstrate that our method has\\nwell-controlled errors, stable self-consistent QM convergence, and\\nenergy-conserving dynamics. We further describe an application to the catalytic\\nkinetics of chorismate mutase. Using an accurate hybrid functional\\nreparametrized to coupled cluster energetics, our QM/MM simulations highlight\\nthe sensitivity in the calculated rate to the choice of quantum method, quantum\\nregion selection, and local protein conformation. Our work is provided through\\nthe open-source \\\\textsc{PySCF} package using acceleration from the\\n\\\\textsc{GPU4PySCF} module.\",\"PeriodicalId\":501304,\"journal\":{\"name\":\"arXiv - PHYS - Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种针对周期系统的量子力学/分子力学(QM/MM)方法的实现,该方法使用了 GPU 加速的 QM 方法、分布式多极的静电表述以及 QM/MM 边界的伪邦德处理。我们证明了我们的方法具有良好的误差控制、稳定的自洽 QM 收敛和能量守恒动力学。我们进一步描述了络氨酸突变酶催化动力学的应用。我们的 QM/MM 模拟使用精确的混合函数解析耦合簇能量学,突出了计算速率对量子方法选择、量子区域选择和局部蛋白质构象的敏感性。我们的工作通过开源的 textsc{PySCF} 软件包提供,并使用了 textsc{GPU4PySCF} 模块的加速功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate QM/MM Molecular Dynamics for Periodic Systems in \textsc{GPU4PySCF} with Applications to Enzyme Catalysis
We present an implementation of the quantum mechanics/molecular mechanics (QM/MM) method for periodic systems using GPU accelerated QM methods, a distributed multipole formulation of the electrostatics, and a pseudo-bond treatment of the QM/MM boundary. We demonstrate that our method has well-controlled errors, stable self-consistent QM convergence, and energy-conserving dynamics. We further describe an application to the catalytic kinetics of chorismate mutase. Using an accurate hybrid functional reparametrized to coupled cluster energetics, our QM/MM simulations highlight the sensitivity in the calculated rate to the choice of quantum method, quantum region selection, and local protein conformation. Our work is provided through the open-source \textsc{PySCF} package using acceleration from the \textsc{GPU4PySCF} module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信