关于子移位和无限词的复杂性

Be'eri Greenfeld, Carlos Gustavo Moreira, Efim Zelmanov
{"title":"关于子移位和无限词的复杂性","authors":"Be'eri Greenfeld, Carlos Gustavo Moreira, Efim Zelmanov","doi":"arxiv-2408.03403","DOIUrl":null,"url":null,"abstract":"We characterize the complexity functions of subshifts up to asymptotic\nequivalence. The complexity function of every aperiodic function is\nnon-decreasing, submultiplicative and grows at least linearly. We prove that\nconversely, every function satisfying these conditions is asymptotically\nequivalent to the complexity function of a recurrent subshift, equivalently, a\nrecurrent infinite word. Our construction is explicit, algorithmic in nature\nand is philosophically based on constructing certain 'Cantor sets of integers',\nwhose 'gaps' correspond to blocks of zeros. We also prove that every\nnon-decreasing submultiplicative function is asymptotically equivalent, up a\nlinear error term, to the complexity function of a minimal subshift.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the complexity of subshifts and infinite words\",\"authors\":\"Be'eri Greenfeld, Carlos Gustavo Moreira, Efim Zelmanov\",\"doi\":\"arxiv-2408.03403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the complexity functions of subshifts up to asymptotic\\nequivalence. The complexity function of every aperiodic function is\\nnon-decreasing, submultiplicative and grows at least linearly. We prove that\\nconversely, every function satisfying these conditions is asymptotically\\nequivalent to the complexity function of a recurrent subshift, equivalently, a\\nrecurrent infinite word. Our construction is explicit, algorithmic in nature\\nand is philosophically based on constructing certain 'Cantor sets of integers',\\nwhose 'gaps' correspond to blocks of zeros. We also prove that every\\nnon-decreasing submultiplicative function is asymptotically equivalent, up a\\nlinear error term, to the complexity function of a minimal subshift.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了直到渐近等价性的子转移复杂性函数的特征。每个非周期性函数的复杂度函数都是递减的、亚乘的,并且至少是线性增长的。我们反过来证明,满足这些条件的每个函数都渐近等价于循环子移位的复杂度函数,等价于循环无限词。我们的构造是明确的,在本质上是算法性的,在哲学上是基于构造某些 "整数康托集",其 "间隙 "对应于零块。我们还证明了每一个非递减的子乘法函数都与最小子移位的复杂度函数渐近等价,但有线性误差项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of subshifts and infinite words
We characterize the complexity functions of subshifts up to asymptotic equivalence. The complexity function of every aperiodic function is non-decreasing, submultiplicative and grows at least linearly. We prove that conversely, every function satisfying these conditions is asymptotically equivalent to the complexity function of a recurrent subshift, equivalently, a recurrent infinite word. Our construction is explicit, algorithmic in nature and is philosophically based on constructing certain 'Cantor sets of integers', whose 'gaps' correspond to blocks of zeros. We also prove that every non-decreasing submultiplicative function is asymptotically equivalent, up a linear error term, to the complexity function of a minimal subshift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信