{"title":"反半群作用下的伽罗瓦理论","authors":"Wesley G. Lautenschlaeger, Thaísa Tamusiunas","doi":"arxiv-2408.02850","DOIUrl":null,"url":null,"abstract":"We develop a Galois theory of commutative rings under actions of finite\ninverse semigroups. We present equivalences for the definition of Galois\nextension as well as a Galois correspondence theorem. We also show how the\ntheory behaves in the case of inverse semigroups with zero.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois Theory under inverse semigroup actions\",\"authors\":\"Wesley G. Lautenschlaeger, Thaísa Tamusiunas\",\"doi\":\"arxiv-2408.02850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a Galois theory of commutative rings under actions of finite\\ninverse semigroups. We present equivalences for the definition of Galois\\nextension as well as a Galois correspondence theorem. We also show how the\\ntheory behaves in the case of inverse semigroups with zero.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We develop a Galois theory of commutative rings under actions of finite
inverse semigroups. We present equivalences for the definition of Galois
extension as well as a Galois correspondence theorem. We also show how the
theory behaves in the case of inverse semigroups with zero.