论后李代数的普遍包络代数的子邻接霍普夫代数

Yunnan Li
{"title":"论后李代数的普遍包络代数的子邻接霍普夫代数","authors":"Yunnan Li","doi":"arxiv-2408.01345","DOIUrl":null,"url":null,"abstract":"Recently the notion of post-Hopf algebra was introduced, with the universal\nenveloping algebra of a post-Lie algebra as the fundamental example. A novel\nproperty is that any cocommutative post-Hopf algebra gives rise to a\nsub-adjacent Hopf algebra with a generalized Grossman-Larson product. By\ntwisting the post-Hopf product, we provide a combinatorial antipode formula for\nthe sub-adjacent Hopf algebra of the universal enveloping algebra of a post-Lie\nalgebra. Relating to such a sub-adjacent Hopf algebra, we also obtain a closed\ninverse formula for the Oudom-Guin isomorphism in the context of post-Lie\nalgebras. Especially as a byproduct, we derive a cancellation-free antipode\nformula for the Grossman-Larson Hopf algebra of ordered trees through a\nconcrete tree-grafting expression.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the sub-adjacent Hopf algebra of the universal enveloping algebra of a post-Lie algebra\",\"authors\":\"Yunnan Li\",\"doi\":\"arxiv-2408.01345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the notion of post-Hopf algebra was introduced, with the universal\\nenveloping algebra of a post-Lie algebra as the fundamental example. A novel\\nproperty is that any cocommutative post-Hopf algebra gives rise to a\\nsub-adjacent Hopf algebra with a generalized Grossman-Larson product. By\\ntwisting the post-Hopf product, we provide a combinatorial antipode formula for\\nthe sub-adjacent Hopf algebra of the universal enveloping algebra of a post-Lie\\nalgebra. Relating to such a sub-adjacent Hopf algebra, we also obtain a closed\\ninverse formula for the Oudom-Guin isomorphism in the context of post-Lie\\nalgebras. Especially as a byproduct, we derive a cancellation-free antipode\\nformula for the Grossman-Larson Hopf algebra of ordered trees through a\\nconcrete tree-grafting expression.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们引入了后霍普夫代数的概念,并以后李代数的普遍展开代数作为基本例子。一个新颖的性质是,任何可交换后霍普夫代数都会产生具有广义格罗斯曼-拉森积的下相邻霍普夫代数。通过扭曲后霍普夫乘积,我们为后列代数的普遍包络代数的次相邻霍普夫代数提供了一个组合反求公式。关于这样的子邻接霍普夫代数,我们还得到了后列代数背景下的奥多姆-古因同构的封闭逆公式。特别是作为副产品,我们通过一个离散的树嫁接表达式,为有序树的格罗斯曼-拉森霍普夫代数推导出了一个无取消的反节点公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the sub-adjacent Hopf algebra of the universal enveloping algebra of a post-Lie algebra
Recently the notion of post-Hopf algebra was introduced, with the universal enveloping algebra of a post-Lie algebra as the fundamental example. A novel property is that any cocommutative post-Hopf algebra gives rise to a sub-adjacent Hopf algebra with a generalized Grossman-Larson product. By twisting the post-Hopf product, we provide a combinatorial antipode formula for the sub-adjacent Hopf algebra of the universal enveloping algebra of a post-Lie algebra. Relating to such a sub-adjacent Hopf algebra, we also obtain a closed inverse formula for the Oudom-Guin isomorphism in the context of post-Lie algebras. Especially as a byproduct, we derive a cancellation-free antipode formula for the Grossman-Larson Hopf algebra of ordered trees through a concrete tree-grafting expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信