双类别中的丰富对偶性 II:模块和组合模块

Vasileios Aravantinos-Sotiropoulos, Christina Vasilakopoulou
{"title":"双类别中的丰富对偶性 II:模块和组合模块","authors":"Vasileios Aravantinos-Sotiropoulos, Christina Vasilakopoulou","doi":"arxiv-2408.03180","DOIUrl":null,"url":null,"abstract":"In this work, we continue the investigation of certain enrichments of dual\nalgebraic structures in monoidal double categories, that was initiated in\n[Vas19]. First, we re-visit monads and comonads in double categories and\nestablish a tensored and cotensored enrichment of the former in the latter,\nunder general conditions. These include monoidal closedness and local\npresentability of the double category, notions that are proposed as tools\nrequired for our main results, but are of interest in their own right. The\nnatural next step involves categories of the newly introduced modules for\nmonads and comodules for comonads in double categories. After we study their\nmain categorical properties, we establish a tensored and cotensored enrichment\nof modules in comodules, as well as an enriched fibration structure that\ninvolves (co)modules over (co)monads in double categories. Applying this\nabstract double categorical framework to the setting of V-matrices produces an\nenrichment of the category of V-enriched modules (fibred over V-categories) in\nV-enriched comodules (opfibred over V-cocategories), which is the many-object\ngeneralization of the respective result for modules (over algebras) and\ncomodules (over coalgebras) in monoidal categories.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enriched duality in double categories II: modules and comodules\",\"authors\":\"Vasileios Aravantinos-Sotiropoulos, Christina Vasilakopoulou\",\"doi\":\"arxiv-2408.03180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we continue the investigation of certain enrichments of dual\\nalgebraic structures in monoidal double categories, that was initiated in\\n[Vas19]. First, we re-visit monads and comonads in double categories and\\nestablish a tensored and cotensored enrichment of the former in the latter,\\nunder general conditions. These include monoidal closedness and local\\npresentability of the double category, notions that are proposed as tools\\nrequired for our main results, but are of interest in their own right. The\\nnatural next step involves categories of the newly introduced modules for\\nmonads and comodules for comonads in double categories. After we study their\\nmain categorical properties, we establish a tensored and cotensored enrichment\\nof modules in comodules, as well as an enriched fibration structure that\\ninvolves (co)modules over (co)monads in double categories. Applying this\\nabstract double categorical framework to the setting of V-matrices produces an\\nenrichment of the category of V-enriched modules (fibred over V-categories) in\\nV-enriched comodules (opfibred over V-cocategories), which is the many-object\\ngeneralization of the respective result for modules (over algebras) and\\ncomodules (over coalgebras) in monoidal categories.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们将继续研究[Vas19]一文中提出的单元双范畴中对偶代数结构的某些富集。首先,我们重新探讨了双范畴中的单子和组合子,并在一般条件下建立了前者在后者中的十元和共元富集。这些条件包括双范畴的一元封闭性和局部可呈现性,这些概念是作为我们主要结果所需的工具而提出的,但它们本身也很有趣。下一步自然涉及双范畴中新引入的模块formonads和comodules的范畴。在研究了它们的主要分类性质之后,我们建立了组合中模块的十元和同元富集,以及涉及双范畴中(共)单子上的(共)模块的富集傅立叶结构。将这一抽象的双范畴框架应用于 V-矩阵的设置,就会在 V-富集组合模块(在 V-类上富集)中产生 V-富集模块范畴(在 V-类上富集)的富集,这是单元范畴中模块(在代数上)和组合模块(在煤基上)的相应结果的多对象广义化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriched duality in double categories II: modules and comodules
In this work, we continue the investigation of certain enrichments of dual algebraic structures in monoidal double categories, that was initiated in [Vas19]. First, we re-visit monads and comonads in double categories and establish a tensored and cotensored enrichment of the former in the latter, under general conditions. These include monoidal closedness and local presentability of the double category, notions that are proposed as tools required for our main results, but are of interest in their own right. The natural next step involves categories of the newly introduced modules for monads and comodules for comonads in double categories. After we study their main categorical properties, we establish a tensored and cotensored enrichment of modules in comodules, as well as an enriched fibration structure that involves (co)modules over (co)monads in double categories. Applying this abstract double categorical framework to the setting of V-matrices produces an enrichment of the category of V-enriched modules (fibred over V-categories) in V-enriched comodules (opfibred over V-cocategories), which is the many-object generalization of the respective result for modules (over algebras) and comodules (over coalgebras) in monoidal categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信