{"title":"元素吸收 环形拓扑","authors":"Ali Shahidikia","doi":"arxiv-2408.03300","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new Topology related to special elements in a\nnoncummutative rings. Consider a ring $R$, we denote by $\\textrm{Id}(R)$ the\nset of all idempotent elements in $R$. Let $a$ is an element of $R$. The\nelement absorb Topology related to $a$ is defined as $\\tau_a:=\\{ I\\subseteq R |\nIa \\subseteq I\\} \\subseteq P(R)$. Since this topology is obtained from act of\nring, it explains Some of algebraic properties of ring in Topological language\n.In a special case when $e$ ia an idempotent element, $\\tau_e:=\\{ I\\subseteq R\n| Ie \\subseteq I\\} \\subseteq P(R)$. We present Topological description of the\npierce decomposition $ R=Re\\oplus R(1-e)$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Element absorb Topology on rings\",\"authors\":\"Ali Shahidikia\",\"doi\":\"arxiv-2408.03300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new Topology related to special elements in a\\nnoncummutative rings. Consider a ring $R$, we denote by $\\\\textrm{Id}(R)$ the\\nset of all idempotent elements in $R$. Let $a$ is an element of $R$. The\\nelement absorb Topology related to $a$ is defined as $\\\\tau_a:=\\\\{ I\\\\subseteq R |\\nIa \\\\subseteq I\\\\} \\\\subseteq P(R)$. Since this topology is obtained from act of\\nring, it explains Some of algebraic properties of ring in Topological language\\n.In a special case when $e$ ia an idempotent element, $\\\\tau_e:=\\\\{ I\\\\subseteq R\\n| Ie \\\\subseteq I\\\\} \\\\subseteq P(R)$. We present Topological description of the\\npierce decomposition $ R=Re\\\\oplus R(1-e)$.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we introduce a new Topology related to special elements in a
noncummutative rings. Consider a ring $R$, we denote by $\textrm{Id}(R)$ the
set of all idempotent elements in $R$. Let $a$ is an element of $R$. The
element absorb Topology related to $a$ is defined as $\tau_a:=\{ I\subseteq R |
Ia \subseteq I\} \subseteq P(R)$. Since this topology is obtained from act of
ring, it explains Some of algebraic properties of ring in Topological language
.In a special case when $e$ ia an idempotent element, $\tau_e:=\{ I\subseteq R
| Ie \subseteq I\} \subseteq P(R)$. We present Topological description of the
pierce decomposition $ R=Re\oplus R(1-e)$.