{"title":"具有 1/2 的局部环上一般线性群的普遍等价性","authors":"Galina Kaleeva","doi":"arxiv-2408.04079","DOIUrl":null,"url":null,"abstract":"In this study, it is proven that the universal equivalence of general linear\ngroups (admitting the inverse-transpose automorphism) of orders greater than\n$2$, over local, not necessarily commutative rings with $1/2$, is equivalent to\nthe coincidence of the orders of the groups and the universal equivalence of\nthe corresponding rings.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal equivalence of general linear groups over local rings with 1/2\",\"authors\":\"Galina Kaleeva\",\"doi\":\"arxiv-2408.04079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, it is proven that the universal equivalence of general linear\\ngroups (admitting the inverse-transpose automorphism) of orders greater than\\n$2$, over local, not necessarily commutative rings with $1/2$, is equivalent to\\nthe coincidence of the orders of the groups and the universal equivalence of\\nthe corresponding rings.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universal equivalence of general linear groups over local rings with 1/2
In this study, it is proven that the universal equivalence of general linear
groups (admitting the inverse-transpose automorphism) of orders greater than
$2$, over local, not necessarily commutative rings with $1/2$, is equivalent to
the coincidence of the orders of the groups and the universal equivalence of
the corresponding rings.