非互易系统的广义布里渊区

Habib Ammari, Silvio Barandun, Ping Liu, Alexander Uhlmann
{"title":"非互易系统的广义布里渊区","authors":"Habib Ammari, Silvio Barandun, Ping Liu, Alexander Uhlmann","doi":"arxiv-2408.05073","DOIUrl":null,"url":null,"abstract":"Recently, it has been observed that the Floquet-Bloch transform with real\nquasiperiodicities fails to capture the spectral properties of non-reciprocal\nsystems. The aim of this paper is to introduce the notion of a generalised\nBrillouin zone by allowing the quasiperiodicities to be complex in order to\nrectify this. It is proved that this shift of the Brillouin zone into the\ncomplex plane accounts for the unidirectional spatial decay of the eigenmodes\nand leads to correct spectral convergence properties. The results in this paper\nclarify and prove rigorously how the spectral properties of a finite structure\nare associated with those of the corresponding semi-infinitely or infinitely\nperiodic lattices and give explicit characterisations of how to extend the\nHermitian theory to non-reciprocal settings. Based on our theory, we\ncharacterise the generalised Brillouin zone for both open boundary conditions\nand periodic boundary conditions. Our results are consistent with the physical\nliterature and give explicit generalisations to the $k$-Toeplitz matrix cases.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalised Brillouin Zone for Non-Reciprocal Systems\",\"authors\":\"Habib Ammari, Silvio Barandun, Ping Liu, Alexander Uhlmann\",\"doi\":\"arxiv-2408.05073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, it has been observed that the Floquet-Bloch transform with real\\nquasiperiodicities fails to capture the spectral properties of non-reciprocal\\nsystems. The aim of this paper is to introduce the notion of a generalised\\nBrillouin zone by allowing the quasiperiodicities to be complex in order to\\nrectify this. It is proved that this shift of the Brillouin zone into the\\ncomplex plane accounts for the unidirectional spatial decay of the eigenmodes\\nand leads to correct spectral convergence properties. The results in this paper\\nclarify and prove rigorously how the spectral properties of a finite structure\\nare associated with those of the corresponding semi-infinitely or infinitely\\nperiodic lattices and give explicit characterisations of how to extend the\\nHermitian theory to non-reciprocal settings. Based on our theory, we\\ncharacterise the generalised Brillouin zone for both open boundary conditions\\nand periodic boundary conditions. Our results are consistent with the physical\\nliterature and give explicit generalisations to the $k$-Toeplitz matrix cases.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们发现,具有实次周期性的弗洛克-布洛赫变换无法捕捉非互易系统的光谱特性。本文旨在引入广义布里渊区(generalisedBrillouin zone)的概念,允许准周期性为复数,以纠正这一问题。本文证明,布里渊区向复数平面的这种移动解释了特征模的单向空间衰减,并导致正确的频谱收敛特性。本文的结果明确并严格证明了有限结构的频谱特性如何与相应的半无限或无限周期晶格的频谱特性相关联,并给出了如何将赫米蒂理论扩展到非互易环境的明确特征。基于我们的理论,我们描述了开放边界条件和周期边界条件下的广义布里渊区。我们的结果与物理文献一致,并对 $k$-Toeplitz 矩阵的情况给出了明确的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalised Brillouin Zone for Non-Reciprocal Systems
Recently, it has been observed that the Floquet-Bloch transform with real quasiperiodicities fails to capture the spectral properties of non-reciprocal systems. The aim of this paper is to introduce the notion of a generalised Brillouin zone by allowing the quasiperiodicities to be complex in order to rectify this. It is proved that this shift of the Brillouin zone into the complex plane accounts for the unidirectional spatial decay of the eigenmodes and leads to correct spectral convergence properties. The results in this paper clarify and prove rigorously how the spectral properties of a finite structure are associated with those of the corresponding semi-infinitely or infinitely periodic lattices and give explicit characterisations of how to extend the Hermitian theory to non-reciprocal settings. Based on our theory, we characterise the generalised Brillouin zone for both open boundary conditions and periodic boundary conditions. Our results are consistent with the physical literature and give explicit generalisations to the $k$-Toeplitz matrix cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信