Peihong Liu, Wen Qi, Ketong Luo, Cailiu Yin, Jiayao Li, Chun Lu, Lina Lu
{"title":"采用三维打印混合三周期最小表面芯材的复合材料夹层结构的弯曲性能和失效机理","authors":"Peihong Liu, Wen Qi, Ketong Luo, Cailiu Yin, Jiayao Li, Chun Lu, Lina Lu","doi":"10.1177/10996362241272792","DOIUrl":null,"url":null,"abstract":"In this paper, a novel hybrid triply periodic minimal surface (TPMS) core with a nonlinear transition region was designed by combining two types of TPMS (Diamond and Schwarz P) structures using the sigmoid function. The width of the transition region was precisely regulated by adjusting the gradient control parameter r in the sigmoid function. Composite sandwich structures (CSS) were fabricated by bonding two carbon fiber reinforced polymer (CFRP) face sheets to a 3D printed polylactic acid (PLA) core. The bending performance and failure mechanisms of the CSSs with the hybrid TPMS cores were analyzed through three-point bending tests and finite element analysis (FEA). The results indicate that as r increases, the transition region of the hybrid TPMS cores becomes narrower, leading to a gradual decrease in bending strength, bending stiffness, and core shear stress. The failure process of the CSSs in the experiment aligns well with the FEA results. Through comparative analysis of the stiffness-to-weight and strength-to-weight ratios of the CSSs with the native TPMS cores, the hybrid TPMS cores with a wider transition region enhance the structural efficiency of the CSSs, while those with a narrower transition region negatively impact the performance of the CSSs.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"115 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bending performance and failure mechanisms of composite sandwich structures with 3D printed hybrid triply periodic minimal surface cores\",\"authors\":\"Peihong Liu, Wen Qi, Ketong Luo, Cailiu Yin, Jiayao Li, Chun Lu, Lina Lu\",\"doi\":\"10.1177/10996362241272792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel hybrid triply periodic minimal surface (TPMS) core with a nonlinear transition region was designed by combining two types of TPMS (Diamond and Schwarz P) structures using the sigmoid function. The width of the transition region was precisely regulated by adjusting the gradient control parameter r in the sigmoid function. Composite sandwich structures (CSS) were fabricated by bonding two carbon fiber reinforced polymer (CFRP) face sheets to a 3D printed polylactic acid (PLA) core. The bending performance and failure mechanisms of the CSSs with the hybrid TPMS cores were analyzed through three-point bending tests and finite element analysis (FEA). The results indicate that as r increases, the transition region of the hybrid TPMS cores becomes narrower, leading to a gradual decrease in bending strength, bending stiffness, and core shear stress. The failure process of the CSSs in the experiment aligns well with the FEA results. Through comparative analysis of the stiffness-to-weight and strength-to-weight ratios of the CSSs with the native TPMS cores, the hybrid TPMS cores with a wider transition region enhance the structural efficiency of the CSSs, while those with a narrower transition region negatively impact the performance of the CSSs.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362241272792\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362241272792","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Bending performance and failure mechanisms of composite sandwich structures with 3D printed hybrid triply periodic minimal surface cores
In this paper, a novel hybrid triply periodic minimal surface (TPMS) core with a nonlinear transition region was designed by combining two types of TPMS (Diamond and Schwarz P) structures using the sigmoid function. The width of the transition region was precisely regulated by adjusting the gradient control parameter r in the sigmoid function. Composite sandwich structures (CSS) were fabricated by bonding two carbon fiber reinforced polymer (CFRP) face sheets to a 3D printed polylactic acid (PLA) core. The bending performance and failure mechanisms of the CSSs with the hybrid TPMS cores were analyzed through three-point bending tests and finite element analysis (FEA). The results indicate that as r increases, the transition region of the hybrid TPMS cores becomes narrower, leading to a gradual decrease in bending strength, bending stiffness, and core shear stress. The failure process of the CSSs in the experiment aligns well with the FEA results. Through comparative analysis of the stiffness-to-weight and strength-to-weight ratios of the CSSs with the native TPMS cores, the hybrid TPMS cores with a wider transition region enhance the structural efficiency of the CSSs, while those with a narrower transition region negatively impact the performance of the CSSs.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).