非全局 Lipschitz 条件下随机微分方程随机周期解的随机 Theta 方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ziheng Chen, Liangmin Cao, Lin Chen
{"title":"非全局 Lipschitz 条件下随机微分方程随机周期解的随机 Theta 方法","authors":"Ziheng Chen, Liangmin Cao, Lin Chen","doi":"10.1007/s11075-024-01892-y","DOIUrl":null,"url":null,"abstract":"<p>This work focuses on the numerical approximations of random periodic solutions of stochastic differential equations (SDEs). Under non-globally Lipschitz conditions, we prove the existence and uniqueness of random periodic solutions for the considered equations and its numerical approximations generated by the stochastic theta (ST) methods with <span>\\(\\theta \\in (1/2,1]\\)</span>. It is shown that the random periodic solution of each ST method converges strongly in the mean square sense to that of SDEs. More precisely, the mean square convergence order is 1/2 for SDEs with multiplicative noise and 1 for SDEs with additive noise, respectively. Numerical results are finally reported to confirm these theoretical findings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic theta methods for random periodic solution of stochastic differential equations under non-globally Lipschitz conditions\",\"authors\":\"Ziheng Chen, Liangmin Cao, Lin Chen\",\"doi\":\"10.1007/s11075-024-01892-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work focuses on the numerical approximations of random periodic solutions of stochastic differential equations (SDEs). Under non-globally Lipschitz conditions, we prove the existence and uniqueness of random periodic solutions for the considered equations and its numerical approximations generated by the stochastic theta (ST) methods with <span>\\\\(\\\\theta \\\\in (1/2,1]\\\\)</span>. It is shown that the random periodic solution of each ST method converges strongly in the mean square sense to that of SDEs. More precisely, the mean square convergence order is 1/2 for SDEs with multiplicative noise and 1 for SDEs with additive noise, respectively. Numerical results are finally reported to confirm these theoretical findings.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01892-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01892-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的重点是随机微分方程(SDE)的随机周期解的数值近似。在非全局 Lipschitz 条件下,我们证明了所考虑方程的随机周期解的存在性和唯一性,以及由 \theta \in (1/2,1]\) 随机θ(ST)方法产生的随机周期解的数值近似。结果表明,每种 ST 方法的随机周期解在均方意义上都强烈收敛于 SDE 的随机周期解。更准确地说,对于乘性噪声的 SDE 和加性噪声的 SDE,其均方收敛阶数分别为 1/2 和 1。最后报告的数值结果证实了这些理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic theta methods for random periodic solution of stochastic differential equations under non-globally Lipschitz conditions

Stochastic theta methods for random periodic solution of stochastic differential equations under non-globally Lipschitz conditions

This work focuses on the numerical approximations of random periodic solutions of stochastic differential equations (SDEs). Under non-globally Lipschitz conditions, we prove the existence and uniqueness of random periodic solutions for the considered equations and its numerical approximations generated by the stochastic theta (ST) methods with \(\theta \in (1/2,1]\). It is shown that the random periodic solution of each ST method converges strongly in the mean square sense to that of SDEs. More precisely, the mean square convergence order is 1/2 for SDEs with multiplicative noise and 1 for SDEs with additive noise, respectively. Numerical results are finally reported to confirm these theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信