离散非交换饥饿户田网格及其在矩阵计算中的应用

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Zheng Wang, Shi-Hao Li, Kang-Ya Lu, Jian-Qing Sun
{"title":"离散非交换饥饿户田网格及其在矩阵计算中的应用","authors":"Zheng Wang, Shi-Hao Li, Kang-Ya Lu, Jian-Qing Sun","doi":"10.1007/s11075-024-01915-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we plan to show an eigenvalue algorithm for block Hessenberg matrices by using the idea of non-commutative integrable systems and matrix-valued orthogonal polynomials. We introduce adjacent families of matrix-valued <span>\\(\\theta \\)</span>-deformed bi-orthogonal polynomials, and derive corresponding discrete non-commutative hungry Toda lattice from discrete spectral transformations for polynomials. It is shown that this discrete system can be used as a pre-precessing algorithm for block Hessenberg matrices. Besides, some convergence analysis and numerical examples of this algorithm are presented.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete non-commutative hungry Toda lattice and its application in matrix computation\",\"authors\":\"Zheng Wang, Shi-Hao Li, Kang-Ya Lu, Jian-Qing Sun\",\"doi\":\"10.1007/s11075-024-01915-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we plan to show an eigenvalue algorithm for block Hessenberg matrices by using the idea of non-commutative integrable systems and matrix-valued orthogonal polynomials. We introduce adjacent families of matrix-valued <span>\\\\(\\\\theta \\\\)</span>-deformed bi-orthogonal polynomials, and derive corresponding discrete non-commutative hungry Toda lattice from discrete spectral transformations for polynomials. It is shown that this discrete system can be used as a pre-precessing algorithm for block Hessenberg matrices. Besides, some convergence analysis and numerical examples of this algorithm are presented.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01915-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01915-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们计划利用非交换可积分系统和矩阵值正交多项式的思想,展示一种块海森伯矩阵的特征值算法。我们引入了相邻的矩阵值(theta)变形的双正交多项式族,并从多项式的离散谱变换推导出相应的离散非交换饿户田网格。研究表明,该离散系统可用作块海森伯矩阵的预处理算法。此外,还介绍了该算法的一些收敛分析和数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discrete non-commutative hungry Toda lattice and its application in matrix computation

Discrete non-commutative hungry Toda lattice and its application in matrix computation

In this paper, we plan to show an eigenvalue algorithm for block Hessenberg matrices by using the idea of non-commutative integrable systems and matrix-valued orthogonal polynomials. We introduce adjacent families of matrix-valued \(\theta \)-deformed bi-orthogonal polynomials, and derive corresponding discrete non-commutative hungry Toda lattice from discrete spectral transformations for polynomials. It is shown that this discrete system can be used as a pre-precessing algorithm for block Hessenberg matrices. Besides, some convergence analysis and numerical examples of this algorithm are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信