{"title":"离散非交换饥饿户田网格及其在矩阵计算中的应用","authors":"Zheng Wang, Shi-Hao Li, Kang-Ya Lu, Jian-Qing Sun","doi":"10.1007/s11075-024-01915-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we plan to show an eigenvalue algorithm for block Hessenberg matrices by using the idea of non-commutative integrable systems and matrix-valued orthogonal polynomials. We introduce adjacent families of matrix-valued <span>\\(\\theta \\)</span>-deformed bi-orthogonal polynomials, and derive corresponding discrete non-commutative hungry Toda lattice from discrete spectral transformations for polynomials. It is shown that this discrete system can be used as a pre-precessing algorithm for block Hessenberg matrices. Besides, some convergence analysis and numerical examples of this algorithm are presented.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete non-commutative hungry Toda lattice and its application in matrix computation\",\"authors\":\"Zheng Wang, Shi-Hao Li, Kang-Ya Lu, Jian-Qing Sun\",\"doi\":\"10.1007/s11075-024-01915-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we plan to show an eigenvalue algorithm for block Hessenberg matrices by using the idea of non-commutative integrable systems and matrix-valued orthogonal polynomials. We introduce adjacent families of matrix-valued <span>\\\\(\\\\theta \\\\)</span>-deformed bi-orthogonal polynomials, and derive corresponding discrete non-commutative hungry Toda lattice from discrete spectral transformations for polynomials. It is shown that this discrete system can be used as a pre-precessing algorithm for block Hessenberg matrices. Besides, some convergence analysis and numerical examples of this algorithm are presented.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01915-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01915-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Discrete non-commutative hungry Toda lattice and its application in matrix computation
In this paper, we plan to show an eigenvalue algorithm for block Hessenberg matrices by using the idea of non-commutative integrable systems and matrix-valued orthogonal polynomials. We introduce adjacent families of matrix-valued \(\theta \)-deformed bi-orthogonal polynomials, and derive corresponding discrete non-commutative hungry Toda lattice from discrete spectral transformations for polynomials. It is shown that this discrete system can be used as a pre-precessing algorithm for block Hessenberg matrices. Besides, some convergence analysis and numerical examples of this algorithm are presented.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.