Seyyed Mohammad Ali Noori, Arezou Khezerlou, Mohammad Hashemi, Mahmood Alizadeh-Sani, Solmaz Firoozy, Faramarz Khodaian, Shiva Adibi, Mahshid Naghashpour, Milad Tavassoli
{"title":"聚乙烯醇/壳聚糖纳米纤维薄膜掺入了红莓花青素负载型 CO-MOF,具有红肉样品包装的多功能性能","authors":"Seyyed Mohammad Ali Noori, Arezou Khezerlou, Mohammad Hashemi, Mahmood Alizadeh-Sani, Solmaz Firoozy, Faramarz Khodaian, Shiva Adibi, Mahshid Naghashpour, Milad Tavassoli","doi":"10.1007/s11947-024-03548-0","DOIUrl":null,"url":null,"abstract":"<p>A novel film was developed from barberry (BA) anthocyanins immobilized on cobalt-based metal–organic framework (Co-MOF) nanoparticles utilizing biodegradable polyvinyl alcohol (PVA) and chitosan nanofiber (ChNF) as intelligent and active packaging for red meat freshness. The aim of the study was evaluated in two scenarios, the first evaluation of the potential of Co-MOF for embedding in packaging films as antimicrobial properties and cobalt color change due to amine release and pH change, and the second evaluation of the application of Co-MOF in the controlled release of BA anthocyanins as antioxidant properties and color changes of food packaging films during spoilage of red meat. The findings showed that the addition of Co-MOF nanoparticles significantly increased the PVA/ChNF film’s specific surface area, and Co-MOF’s better capacity to concentrate volatile amines allowed the film to detect freshness extremely sensitively, and the antibacterial capabilities of the films for <i>E. coli</i>, <i>S. aureus</i>, and <i>P. fluorescence</i> bacteria were 20.3 ± 0.3 mm, 21.6 ± 0.2 mm, and 19.6 ± 0.4 mm, respectively. Moreover, the inclusion of BA and Co-MOF significantly improves the tensile strength (from 67.2 to 81.3 MPa), flexibility (18.9 to 22.3%), UV protection, water vapor resistance, and sensitivity to ammonia-induced discoloration of the PVA/ChNF film. PVA/ChNF/Co-MOF and PVA/ChNF/Co-MOF/BA films’ colors changed from pink to dark brown and from deep peach to black-greenish-brown when used to track the spoilage of red meat. In conclusion, it was possible to use the created films as intelligent and active food packaging materials.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"87 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyvinyl Alcohol/Chitosan Nanofiber-Based Films Incorporated with Barberry Anthocyanin-Loaded CO-MOF as Multifunctional Performance for Red Meat Sample Packaging\",\"authors\":\"Seyyed Mohammad Ali Noori, Arezou Khezerlou, Mohammad Hashemi, Mahmood Alizadeh-Sani, Solmaz Firoozy, Faramarz Khodaian, Shiva Adibi, Mahshid Naghashpour, Milad Tavassoli\",\"doi\":\"10.1007/s11947-024-03548-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel film was developed from barberry (BA) anthocyanins immobilized on cobalt-based metal–organic framework (Co-MOF) nanoparticles utilizing biodegradable polyvinyl alcohol (PVA) and chitosan nanofiber (ChNF) as intelligent and active packaging for red meat freshness. The aim of the study was evaluated in two scenarios, the first evaluation of the potential of Co-MOF for embedding in packaging films as antimicrobial properties and cobalt color change due to amine release and pH change, and the second evaluation of the application of Co-MOF in the controlled release of BA anthocyanins as antioxidant properties and color changes of food packaging films during spoilage of red meat. The findings showed that the addition of Co-MOF nanoparticles significantly increased the PVA/ChNF film’s specific surface area, and Co-MOF’s better capacity to concentrate volatile amines allowed the film to detect freshness extremely sensitively, and the antibacterial capabilities of the films for <i>E. coli</i>, <i>S. aureus</i>, and <i>P. fluorescence</i> bacteria were 20.3 ± 0.3 mm, 21.6 ± 0.2 mm, and 19.6 ± 0.4 mm, respectively. Moreover, the inclusion of BA and Co-MOF significantly improves the tensile strength (from 67.2 to 81.3 MPa), flexibility (18.9 to 22.3%), UV protection, water vapor resistance, and sensitivity to ammonia-induced discoloration of the PVA/ChNF film. PVA/ChNF/Co-MOF and PVA/ChNF/Co-MOF/BA films’ colors changed from pink to dark brown and from deep peach to black-greenish-brown when used to track the spoilage of red meat. In conclusion, it was possible to use the created films as intelligent and active food packaging materials.</p>\",\"PeriodicalId\":562,\"journal\":{\"name\":\"Food and Bioprocess Technology\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioprocess Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11947-024-03548-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03548-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Polyvinyl Alcohol/Chitosan Nanofiber-Based Films Incorporated with Barberry Anthocyanin-Loaded CO-MOF as Multifunctional Performance for Red Meat Sample Packaging
A novel film was developed from barberry (BA) anthocyanins immobilized on cobalt-based metal–organic framework (Co-MOF) nanoparticles utilizing biodegradable polyvinyl alcohol (PVA) and chitosan nanofiber (ChNF) as intelligent and active packaging for red meat freshness. The aim of the study was evaluated in two scenarios, the first evaluation of the potential of Co-MOF for embedding in packaging films as antimicrobial properties and cobalt color change due to amine release and pH change, and the second evaluation of the application of Co-MOF in the controlled release of BA anthocyanins as antioxidant properties and color changes of food packaging films during spoilage of red meat. The findings showed that the addition of Co-MOF nanoparticles significantly increased the PVA/ChNF film’s specific surface area, and Co-MOF’s better capacity to concentrate volatile amines allowed the film to detect freshness extremely sensitively, and the antibacterial capabilities of the films for E. coli, S. aureus, and P. fluorescence bacteria were 20.3 ± 0.3 mm, 21.6 ± 0.2 mm, and 19.6 ± 0.4 mm, respectively. Moreover, the inclusion of BA and Co-MOF significantly improves the tensile strength (from 67.2 to 81.3 MPa), flexibility (18.9 to 22.3%), UV protection, water vapor resistance, and sensitivity to ammonia-induced discoloration of the PVA/ChNF film. PVA/ChNF/Co-MOF and PVA/ChNF/Co-MOF/BA films’ colors changed from pink to dark brown and from deep peach to black-greenish-brown when used to track the spoilage of red meat. In conclusion, it was possible to use the created films as intelligent and active food packaging materials.
期刊介绍:
Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community.
The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.