共聚物工程实验设计的高效近似方法

Swagatam Mukhopadhyay
{"title":"共聚物工程实验设计的高效近似方法","authors":"Swagatam Mukhopadhyay","doi":"arxiv-2408.02166","DOIUrl":null,"url":null,"abstract":"We develop a set of algorithms to solve a broad class of Design of Experiment\n(DoE) problems efficiently. Specifically, we consider problems in which one\nmust choose a subset of polymers to test in experiments such that the learning\nof the polymeric design rules is optimal. This subset must be selected from a\nlarger set of polymers permissible under arbitrary experimental design\nconstraints. We demonstrate the performance of our algorithms by solving\nseveral pragmatic nucleic acid therapeutics engineering scenarios, where\nlimitations in synthesis of chemically diverse nucleic acids or feasibility of\nmeasurements in experimental setups appear as constraints. Our approach focuses\non identifying optimal experimental designs from a given set of experiments,\nwhich is in contrast to traditional, generative DoE methods like BIBD. Finally,\nwe discuss how these algorithms are broadly applicable to well-established\noptimal DoE criteria like D-optimality.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Approximate Methods for Design of Experiments for Copolymer Engineering\",\"authors\":\"Swagatam Mukhopadhyay\",\"doi\":\"arxiv-2408.02166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a set of algorithms to solve a broad class of Design of Experiment\\n(DoE) problems efficiently. Specifically, we consider problems in which one\\nmust choose a subset of polymers to test in experiments such that the learning\\nof the polymeric design rules is optimal. This subset must be selected from a\\nlarger set of polymers permissible under arbitrary experimental design\\nconstraints. We demonstrate the performance of our algorithms by solving\\nseveral pragmatic nucleic acid therapeutics engineering scenarios, where\\nlimitations in synthesis of chemically diverse nucleic acids or feasibility of\\nmeasurements in experimental setups appear as constraints. Our approach focuses\\non identifying optimal experimental designs from a given set of experiments,\\nwhich is in contrast to traditional, generative DoE methods like BIBD. Finally,\\nwe discuss how these algorithms are broadly applicable to well-established\\noptimal DoE criteria like D-optimality.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一套算法,可以高效地解决一大类实验设计(DoE)问题。具体来说,我们考虑的问题是,我们必须选择一个聚合物子集进行实验测试,从而使聚合物设计规则的学习达到最优。这个子集必须从任意实验设计约束条件下允许使用的更大聚合物集合中选出。我们通过求解各种实用的核酸治疗工程方案来证明我们算法的性能,在这些方案中,化学多样性核酸合成的限制或实验装置测量的可行性都是制约因素。我们的方法侧重于从一组给定的实验中确定最佳实验设计,这与传统的生成式 DoE 方法(如 BIBD)截然不同。最后,我们讨论了这些算法如何广泛适用于成熟的最优 DoE 标准(如 D-最优性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Approximate Methods for Design of Experiments for Copolymer Engineering
We develop a set of algorithms to solve a broad class of Design of Experiment (DoE) problems efficiently. Specifically, we consider problems in which one must choose a subset of polymers to test in experiments such that the learning of the polymeric design rules is optimal. This subset must be selected from a larger set of polymers permissible under arbitrary experimental design constraints. We demonstrate the performance of our algorithms by solving several pragmatic nucleic acid therapeutics engineering scenarios, where limitations in synthesis of chemically diverse nucleic acids or feasibility of measurements in experimental setups appear as constraints. Our approach focuses on identifying optimal experimental designs from a given set of experiments, which is in contrast to traditional, generative DoE methods like BIBD. Finally, we discuss how these algorithms are broadly applicable to well-established optimal DoE criteria like D-optimality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信